Organic Computing für eine intelligente Agrartechnik: Perspektive und Fallstudie

Autor/innen

  • Anthony Stein
  • Jonas Boysen

DOI:

https://doi.org/10.15150/ae.2025.3331

Abstract

Organic Computing (OC) ist ein Paradigma für den Entwurf von intelligenten technischen Systemen, die in komplexen Echtweltumgebungen agieren sollen. OC setzt dabei einen Fokus auf natursinspirierte Mechanismen und zielt darauf ab, die zugrundeliegenden Prinzipien auf komplexe technische Systeme zu übertragen, um diese mit lebensähnlichen Eigenschaften wie Intelligenz, Flexibilität, Robustheit sowie Selbstorganisationsfähigkeit auszustatten. In der Agrartechnik werden hoch-automatisierte und autonome technische Systeme für eine nachhaltige Produktion landwirtschaftlicher Erzeugnisse entwickelt, welche zuverlässig unter dynamischen Echtweltbedingungen funktionieren müssen. Je weiter diese Technologien automatisiert und mit Künstlicher Intelligenz (KI) versehen werden, desto mehr Komponenten mit Anwendung von Informationstechnologie müssen über verschiedene Systemebenen miteinander interagieren, was die Komplexität des Gesamtsystems weiter erhöht. In diesem Artikel analysieren wir die Eignung von OC für den Entwurf von intelligenten agrartechnischen Systemen. In einer Fallstudie wenden wir einen OC-Ansatz für die Optimierung der sekundären Bodenbearbeitung an. Wir berichten von vielversprechenden empirischen Ergebnissen einer entwickelten mehrschichtigen Systemarchitektur für die Umsetzung einer intelligenten Traktorsteuerung unter Einsatz moderner KI-Methoden.

Literaturhinweise

Adam, K.M.; Erbach, D.C. (1992): Secondary Tillage Tool Effect on Soil Aggregation. Transactions of the ASAE 35(6), pp. 1771–1776, https://doi.org/10.13031/2013.28796

Albiero, D.; Pontin Garcia, A.; Kiyoshi Umezu, C.; Leme de Paulo, R. (2022): Swarm robots in mechanized agricultural operations: A review about challenges for research. Computers and Electronics in Agriculture 193, p. 106608, https://doi.org/10.1016/j.compag.2021.106608

Allerding, F.; Becker, B.; Schmeck, H. (2011): Decentralised Energy Management for Smart Homes. In: Organic Computing — A Paradigm Shift for Complex Systems. Eds. Müller-Schloer, C.; Schmeck, H. et al., Basel, Birkhäuser, pp. 605–607

Backman, J.; Oksanen, T.; Visala, A. (2012): Navigation system for agricultural machines: Nonlinear model predictive path tracking. Computers and Electronics in Agriculture 82, pp.32-43, https://doi.org/10.1016/j.compag.2011.12.009

Bechar, A.; Vigneault, C. (2016): Agricultural robots for field operations: Concepts and components. Biosystems Engineering 149, pp. 94–111, https://doi.org/10.1016/j.biosystemseng.2016.06.014

Bernauer, A.; Zeppenfeld, J.; Bringmann, O.; Herkersdorf, A.; Rosenstiel, W. (2011): Combining Software and Hardware LCS for Lightweight On-chip Learning. In: Organic Computing — A Paradigm Shift for Complex Systems. Eds. Müller-Schloer, C.; Schmeck, H. et al., Basel, Birkhäuser, pp. 253–265

Boden, M.A. (2018): Artificial intelligence. A very short introduction, Oxford, United Kingdom, Oxford University Press

Bökle, S.; Paraforos, D.S.; Reiser, D.; Griepentrog, H.W. (2022): Conceptual framework of a decentral digital farming system for resilient and safe data management. Smart Agricultural Technology 2, p. 100039, https://doi.org/10.1016/j.atech.2022.100039

Boubin, J.; Chumley, J.; Stewart, C.; Khanal, S. (2019): Autonomic Computing Challenges in Fully Autonomous Precision Agriculture. In: 2019 IEEE International Conference on Autonomic Computing (ICAC), 16.06.2019–20.06.2019, Umea, Sweden, IEEE, pp. 11–17

Boysen, J.; Zender, L.; Stein, A. (2023): Modeling the soil-machine response of secondary tillage: A deep learning approach. Smart Agricultural Technology 6, p. 100363, https://doi.org/10.1016/j.atech.2023.100363

Braunack, M.V.; Dexter, A.R. (1989): Soil aggregation in the seedbed: A review. I. Properties of aggregates and beds of aggregates. Soil and Tillage Research 14(3), pp. 259–279, https://doi.org/10.1016/0167-1987(89)90013-5

CEMA (2017): Digital Farming: what does it really mean? And what is the vision of Europe’s farm machinery industry for Digital Farming? https://www.cema-agri.org/images/publications/position-papers/CEMA_Digital_Farming_-_Agriculture_4.0__13_02_2017_0.pdf, accessed on 10 July 2024

Ding, Y.; Wang, L.; Li, Y.; Li, D. (2018): Model predictive control and its application in agriculture: A review. Computers and Electronics in Agriculture 151, pp.104-117, https://doi.org/10.1016/j.compag.2018.06.004

DLG e.V. (2018): Digitale Landwirtschaft. Ein Positionspapier der DLG https://www.dlg.org/fileadmin/downloads/landwirtschaft/themen/ausschuesse_facharbeit/DLG_Position_Digitalisierung.pdf, accessed on 10 July 2024

Fisch, D.; Janicke, M.; Sick, B.; Muller-Schloer, C. (2010): Quantitative Emergence—A Refined Approach Based on Divergence Measures. In: 2010 4th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO), 27.09.2010 - 01.10.2010, Budapest, Hungary, IEEE, pp. 94–103

Fountas, S.; Espejo-García, B.; Kasimati, A.; Gemtou, M.; Panoutsopoulos, H.; Anastasiou, E. (2024): Agriculture 5.0: Cutting-Edge Technologies, Trends, and Challenges. IT Professional 26(1), pp. 40–47, https://doi.org/10.1109/MITP.2024.3358972

Fountas, S.; Mylonas, N.; Malounas, I.; Rodias, E.; Hellmann Santos, C.; Pekkeriet, E. (2020): Agricultural Robotics for Field Operations. Sensors (Basel, Switzerland) 20(9), https://doi.org/10.3390/s20092672

Groher, T.; Heitkämper, K.; Umstätter, C. (2020): Digital technology adoption in livestock production with a special focus on ruminant farming. Animal 14(11), pp. 2404-2413, https://doi.org/10.1017/S1751731120001391

Guérif, J.; Richard, G.; Dürr, C.; Machet, J.; Recous, S.; Roger-Estrade, J. (2001): A review of tillage effects on crop residue management, seedbed conditions and seedling establishment. Soil and Tillage Research 61(1-2), pp. 13–32, https://doi.org/10.1016/S0167-1987(01)00187-8

Hartmann, J.; Stechele, W.; Maehle, E. (2013): Self-adaptation for Mobile Robot Algorithms Using Organic Computing Principles. In: Architecture of Computing Systems – ARCS 2013. Eds. Hutchison, D.; Kanade, T. et al., Berlin, Heidelberg, Springer Berlin Heidelberg, pp. 232–243

Heiß, A.; Paraforos, D.S.; Sharipov, G.M.; Griepentrog, H.W. (2022): Real-time control for multi-parametric data fusion and dynamic offset optimization in sensor-based variable rate nitrogen application. Computers and Electronics in Agriculture 196, p.106893, https://doi.org/10.1016/j.compag.2022.106893

Herlitzius, T.; Hengst, M.; Grosa, A.; Fichtl, H. (2021): Fieldswarm technology for tillage and crop care. at – Automatisierungstechnik 69(4), pp. 316–324, https://doi.org/10.1515/auto-2020-0127

Huber, P.J. (1992): Robust Estimation of a Location Parameter. In: Breakthroughs in Statistics. Eds. Kotz, S.; Johnson, N.L., New York, NY, Springer New York, pp. 492–518

ISPA (2024): Precision Ag Definition, International Society of Precision Agriculture https://www.ispag.org/about/definition (last accessed 17.12.2024).

Kautzmann, T.; Geimer, M.; Wünsche, M.; Mostaghim, S.; Schmeck, H. (2012): Organic Computing lernt nie aus. Mobile Maschinen 4, pp. 36–38, https://doi.org/10.5445/IR/1000029516

Kautzmann, T.; Wünsche, M.; Bliesener, M.; Mostaghim, S.; Geimer, M.; Schmeck, H. (2010): Selbstadaptierendes und lernfähiges Management für mobile Arbeitsmaschinen. agricultural engineering.eu 65(4), pp. 240–243, https://doi.org/10.15150/lt.2010.491

Kephart, J.O.; Chess, D.M. (2003): The vision of autonomic computing. Computer 36(1), pp. 41–50, https://doi.org/10.1109/MC.2003.1160055

Kidambi, R.; Rajeswaran, A.; Netrapalli, P.; Joachims, T. (2020): MOReL: Model-Based Offline Reinforcement Learning. In: NIPS ‘20: Proceedings of the 34th International Conference on Neural Information Processing Systems, 06.–12.12.2020, Vancouver BC Canada, Curran Associates Inc, pp. 21810–21823

Köller, K.; Hensel, O. (2019): Verfahrenstechnik in der Pflanzenproduktion. Stuttgart, Deutschland, utb GmbH

Kounev, S.; Kephart, J.O.; Milenkoski, A.; Zhu, X. (Eds.) (2017): Self-Aware Computing Systems. Cham, Springer International Publishing

Krupitzer, C.; Stein, A. (2024): Unleashing the Potential of Digitalization in the Agri-Food Chain for Integrated Food Systems. Annual review of food science and technology 15(1), pp. 307–328, https://doi.org/10.1146/annurev-food-012422-024649

Lakshminarayanan, B.; Pritzel, A.; Blundell, C. (2017): Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. In: NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, 4.-9.12.17, Long Beach California USA, Curran Associates, Inc, pp. 6405–6416

Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. (2015): Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, https://doi.org/10.48550/arXiv.1509.02971

Lüling, N.; Boysen, J.; Kuper, H.; Stein, A. (2022): A Context Aware and Self-improving Monitoring System for Field Vegetables. In: Architecture of Computing Systems. ARCS 2022, 13.–15.09.2022, Heidelberg, Germany, Springer International Publishing, pp. 226–240

Macenski, S.; Foote, T.;Gerkey, B.; Lalancette, C.; Woodall, W. (2022): Robot Operating System 2: Design, architecture, and uses in the wild. Science Robotics 7, https://doi.org/10.1126/scirobotics.abm6074

Mauser, I.; Hirsch, C.; Kochanneck, S.; Schmeck, H. (2015): Organic Architecture for Energy Management and Smart Grids. In: 2015 IEEE International Conference on Autonomic Computing (ICAC), 07.–10.07.2015, Grenoble, France, IEEE, pp. 101–108

Mnif, M.; Richter, U.; Branke, J.; Schmeck, H.; Müller-Schloer, C. (2007): Measurement and Control of Self-organised Behaviour in Robot Swarms. In: Architecture of Computing Systems – ARCS 2007, 12.–15.03.2007, Zurich, Switzerland, Springer, pp. 209–223

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.; Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg, S.; Hassabis, D. (2015): Human-level control through deep reinforcement learning. Nature 518(7540), pp. 529–533, https://doi.org/10.1038/nature14236

Modak, S.; Stein, A. (2024): Synthesizing Training Data for Intelligent Weed Control Systems Using Generative AI. In: Architecture of Computing Systems – ARCS 2024, Springer International Publishing, 14.-16.05.2024, Potsdam, Germany, Springer, https://doi.org/10.1007/978-3-031-66146-4_8

Moerland, T.M.; Broekens, J.; Plaat, A.; Jonker, C.M. (2023): Model-based Reinforcement Learning: A Survey. Foundations and Trends® in Machine Learning 16(1), pp. 1–118, https://doi.org/10.1561/2200000086

Mohammadi, F.; Maleki, M.R.; Khodaei, J. (2022): Control of variable rate system of a rotary tiller based on real-time measurement of soil surface roughness. Soil and Tillage Research 215, p.105216, https://doi.org/10.1016/j.still.2021.105216

Mostaghim, S.; Schmeck, H.; Wünsche, M.; Geimer, M.; Kautzmann, T. (2011): Organic Computing in Off-highway Machines. In: Organic Computing – A Paradigm Shift for Complex Systems. Eds. Müller-Schloer, C.; Schmeck, H. et al., Basel, Birkhäuser, pp. 601–603

Müller-Schloer, C.; Schmeck, H.; Ungerer, T. (Eds.) (2011): Organic Computing – A Paradigm Shift for Complex Systems. Basel, Birkhäuser

Müller-Schloer, C.; Tomforde, S. (2017a): Applications. In: Organic Computing – Technical Systems for Survival in the Real World, Cham, Birkhäuser, pp. 429–547

Müller-Schloer, C.; Tomforde, S. (2017b): Building Organic Computing Systems. In: Organic Computing - Technical Systems for Survival in the Real World, Cham, Birkhäuser, pp. 171–258

Müller-Schloer, C.; Tomforde, S. (2017c): Distributed Smart Cameras. In: Organic Computing - Technical Systems for Survival in the Real World, Cham, Birkhäuser, pp. 486–496

Müller-Schloer, C.; Tomforde, S. (2017d): Organic Computing - Technical Systems for Survival in the Real World. Cham, Birkhäuser

Müller-Schloer, C.; Tomforde, S. (2017e): The Major Context. In: Organic Computing - Technical Systems for Survival in the Real World, Cham, Birkhäuser, pp. 549–572

Nix, D.A.; Weigend, A.S. (1994): Estimating the mean and variance of the target probability distribution. In: Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94), 28.06.–02.07.1994, Orlando, FL, USA, IEEE, 55–60 vol.1

Oroojlooy, A.; Hajinezhad, D. (2023): A review of cooperative multi-agent deep reinforcement learning. Applied Intelligence 53(11), pp. 13677–13722, https://doi.org/10.1007/s10489-022-04105-y

Pacher, M.; Brinkschulte, U. (2020): Evaluation of the dependability of an artificial DNA in a dynamic automotive environment. Journal of Systems Architecture 107, p. 101736, https://doi.org/10.1016/j.sysarc.2020.101736

Paraforos, D.S.; Griepentrog, H.W. (2021): Digital Farming and Field Robotics: Internet of Things, Cloud Computing, and Big Data. In: Fundamentals of Agricultural and Field Robotics. Eds. Karkee, M.; Zhang, Q., Cham, Springer International Publishing, pp. 365–385

Prothmann, H.; Tomforde, S.; Branke, J.; Hähner, J.; Müller-Schloer, C.; Schmeck, H. (2011): Organic Traffic Control. In: Organic Computing – A Paradigm Shift for Complex Systems. Eds. Müller-Schloer, C.; Schmeck, H. et al., Basel, Birkhäuser, pp. 431–446

Ragaveena, S.; Shirly Edward, A.; Surendran, U. (2021): Smart controlled environment agriculture methods: a holistic review. Reviews in Environmental Science and Bio/Technology 20, pp. 887–913, https://doi.org/10.1007/s11157-021-09591-z

Reif, W.; Anders, G.; Seebach, H.; Steghöfer, J.-P.; André, E.; Hähner, J.; Müller-Schloer, C.; Ungerer, T. (2016): Trustworthy Open Self-Organising Systems. Cham, Springer International Publishing

Riegler-Nurscher, P.; Moitzi, G.; Prankl, J.; Huber, J.; Karner, J.; Wagentristl, H.; Vincze, M. (2020): Machine vision for soil roughness measurement and control of tillage machines during seedbed preparation. Soil and Tillage Research 196, p. 104351, https://doi.org/10.1016/j.still.2019.104351

Rudolph, S.; Tomforde, S.; Hähner, J. (2019): Mutual Influence-aware Runtime Learning of Self-adaptation Behavior. ACM Transactions on Autonomous and Adaptive Systems 14(1), pp. 1–37, https://doi.org/10.1145/3345319

Russell, S.J.; Norvig, P.; Chang, M.-W. (op. 2022): Artificial intelligence. A modern approach. Fourth edition, Harlow, Pearson Education

Sandri, R.; Anken, T.; Hilfiker, T.; Sartori, L.; Bollhalder, H. (1998): Comparison of methods for determining cloddiness in seedbed preparation. Soil and Tillage Research 45(1), pp. 75–90, https://doi.org/10.1016/S0167-1987(97)00071-8

Schmeck, H.; Müller-Schloer, C.; Çakar, E.; Mnif, M.; Richter, U. (2010): Adaptivity and self-organization in organic computing systems. ACM Transactions on Autonomous and Adaptive Systems 5(3), pp. 1–32, https://doi.org/10.1145/1837909.1837911

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. (2017): Proximal Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347, https://doi.org/10.48550/arXiv.1707.06347

Sommer, M.; Tomforde, S.; Hähner, J. (2016): An Organic Computing Approach to Resilient Traffic Management. In: Autonomic Road Transport Support Systems. Eds. McCluskey, T.L.; Kotsialos, A. et al., Cham, Springer International Publishing, pp. 113–130

Stein, A. (2017): Reaction Learning. In: Organic Computing – Technical Systems for Survival in the Real World, in Chapter 7 Basic Methods, Cham, Birkhäuser, pp. 287–328, https://link.springer.com/chapter/10.1007/978-3-319-68477-2_7

Stein, A.; Tomforde, S. (2021): Reflective Learning Classifier Systems for Self-Adaptive and Self-Organising Agents. In: 2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C), 27.09–01.10.2021, DC, USA, IEEE, pp. 139–145

Stein, A.; Tomforde, S.; Botev, J.; Lewis, P.R. (2021): Lifelike Computing Systems. In: Lifelike Computing Systems Workshop 2021, 19.07.2021, Prague, Czech Republic (held entirely online), CEUR Workshop Proceedings

Stein, A.; Tomforde, S.; Diaconescu, A.; Hähner, J.; Müller-Schloer, C. (2018): A Concept for Proactive Knowledge Construction in Self-Learning Autonomous Systems. In: 2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W), 03.–07.09.2018, Trento, Italy, IEEE, pp. 204–213

Stein, A.; Tomforde, S.; Rauh, D.; Hähner, J. (2016): Dealing with Unforeseen Situations in the Context of Self-Adaptive Urban Traffic Control: How to Bridge the Gapp. In: 2016 IEEE International Conference on Autonomic Computing (ICAC), 17.–22.07.2016, Würzburg, IEEE, pp. 167–172

Sutton, R.S.; Barto, A.G. (2018): Reinforcement learning: An introduction. MIT press

Tomforde, S.; Brameshuber, A.; Hähner, J.; Muller-Schloer, C. (2011a): Restricted on-line learning in real-world systems. In: 2011 IEEE Congress on Evolutionary Computation (CEC), 05.–08.06.2011, New Orleans, LA, USA, IEEE, pp. 1628–1635

Tomforde, S.; Hurling, B.; Hähner, J. (2011b): Distributed Network Protocol Parameter Adaptation in Mobile Ad-Hoc Networks. In: Informatics in Control, Automation and Robotics. Eds. Cetto, J.A.; Ferrier, J.-L. et al., Berlin, Heidelberg, Springer Berlin Heidelberg, pp. 91–104

Tomforde, S.; Müller-Schloer, C. (2014): Incremental design of adaptive systems. Journal of Ambient Intelligence and Smart Environments 6(2), pp. 179–198, https://doi.org/10.3233/AIS-140252

Tomforde, S.; Prothmann, H.; Branke, J.; Hähner, J.; Mnif, M.; Müller-Schloer, C.; Richter, U.; Schmeck, H. (2011c): Observation and Control of Organic Systems. In: Organic Computing – A Paradigm Shift for Complex Systems. Eds. Müller-Schloer, C.; Schmeck, H. et al., Basel, Birkhäuser, pp. 325–338

Tomforde, S.; Sick, B.; Müller-Schloer, C. (2017): Organic Computing in the Spotlight. arXiv preprint arXiv:1701.08125, https://doi.org/10.48550/arXiv.1701.08125

Varani, M.; Mattetti, M.; Molari, G.; Biglia, A.; Comba, L. (2023): Correlation between power harrow energy demand and tilled soil aggregate dimensions. Biosystems Engineering 225, pp. 54–68, https://doi.org/10.1016/j.biosystemseng.2022.11.008

VDE; GI e.V. (2003): Organic Computing. Computer- und Systemarchitektur im Jahr 2003. Positionspapier https://fg-oc.gi.de/fileadmin/FG/OC/Publications/VDE-ITG-GI-Positionspapier_Organic_Computing.pdf, accessed on 10 July 2024

Vougioukas, S.G. (2019): Agricultural Robotics. Annual Review of Control, Robotics, and Autonomous Systems 2(1), pp. 365–392, https://doi.org/10.1146/annurev-control-053018-023617

Watkins, C.J.; Dayan, P. (1992): Q-learning. Machine learning 8, pp.279-292, https://doi.org/10.1007/BF00992698

Wünsche, M.; Mostaghim, S.; Schmeck, H.; Kautzmann, T.; Geimer, M. (2010): Organic Computing in Off-highway Machines. In: ICAC ‘10: 7th International Conference on Autonomic Computing, 07.06.2010, Washington DC USA, Association for Computing Machinery, pp. 51–58

Yu, T.; Thomas, G.; Yu, L.; Ermon, S.; Zou, J.Y.; Levine, S.; Finn, C.; Ma, T. (2020): MOPO: Model-based Offline Policy Optimization. In: NIPS’20: 34th International Conference on Neural Information Processing Systems, 06-12.12.2020, Vancouver BC Canada, Curran Associates, Inc, pp. 14129–14142

Zeppenfeld, J.; Herkersdorf, A. (2011): Applying autonomic principles for workload management in multi-core systems on chip. In: ICAC ‘11: 8th International Conference on Autonomic Computing, 14.–18.06.2011, Karlsruhe Germany, ACM, p. 3–10

Downloads

Veröffentlicht

12.02.2025

Zitationsvorschlag

Stein, A., & Boysen, J. (2025). Organic Computing für eine intelligente Agrartechnik: Perspektive und Fallstudie. Agricultural engineering.Eu, 80(1). https://doi.org/10.15150/ae.2025.3331

Ausgabe

Rubrik

Fachartikel