Adaptives dynamisches Programmieren zur robusten Bahnverfolgung eines landwirtschaftlichen Roboters mithilfe kritischer neuronaler Netze

Autor/innen

  • Alireza Azimi
  • Redmond R. Shamshiri
  • Aliakbar Ghasemzadeh

DOI:

https://doi.org/10.15150/ae.2025.3327

Abstract

Die Steuerung der Trajektorienverfolgung für landwirtschaftliche mobile Roboter stellt aufgrund inhärenter nicht-holonomer Einschränkungen und externer Störungen einzigartige Herausforderungen dar. Diese können zu Abweichungen von der gewünschten Bahn führen und die Leistung sowie die Betriebseffizienz des Roboters beeinträchtigen. In diesem Beitrag wird ein fortschrittliches, lernbasiertes Steuerungsframework für die robuste Bahnverfolgung von landwirtschaftlichen Robotern mit Ackermann-Lenkmechanismen vorgestellt. Mithilfe von adaptivem dynamischem Programmieren (ADP) und einem kritischen neuronalen Netz (Critic Neural Network) bewältigt die vorgeschlagene Methode externe Störungen, einschließlich Raddurchdrehens, das in landwirtschaftlichen Umgebungen häufig auftritt. Das kritische neuronale Netz löst die Hamilton-Jacobi-Isaacs (HJI)-Gleichung, wodurch der Regler die nahezu optimale Steuerungspolitik in Echtzeit erlernen und sich an Umweltstörungen anpassen kann. Die Gewichte des neuronalen Netzes werden online durch ein adaptives Gesetz aktualisiert, was kontinuierliches Lernen und Anpassung während des Betriebs gewährleistet. Darüber hinaus werden umfassende Simulationsstudien präsentiert, um die Wirksamkeit des vorgeschlagenen Frameworks zu bewerten. Die Ergebnisse zeigen erhebliche Verbesserungen der Trajektorienverfolgungsleistung im Vergleich zu bestehenden Steuerungsmethoden, insbesondere in Szenarien mit erheblichen Unsicherheiten und Störungen.

Literaturhinweise

Carpio, R. F. et al. (2020): A Navigation Architecture for Ackermann Vehicles in Precision Farming. IEEE Robotics and Automation Letters 5(2), pp. 1103–1110, https://doi.org/10.1109/LRA.2020.2967306

Ding, C.; Ding, S.; Wei, X.; Ji, X.; Sun, J.; Mei, K. (2024): Disturbance-Observer-Based Barrier Function Adaptive Sliding Mode Control for Path Tracking of Autonomous Agricultural Vehicles with Matched-Mismatched Disturbances. IEEE Transactions on Transportation Electrification, pp. 1–1, https://doi.org/10.1109/TTE.2023.3333001

El Bou, C. M.; Von Ellenrieder, K. D.; Gupta, S. K. (2022): A homogeneity-based path following shared control system for UGVs. 30th Mediterranean Conference on Control and Automation (MED), Vouliagmeni, Greece, 2022, pp. 725–730, https://doi.org/10.1109/MED54222.2022.9837268

Ge, Z. et al. (2023): Robust adaptive sliding mode control for path tracking of unmanned agricultural vehicles. Computers and Electrical Engineering 108, p. 108693, https://doi.org/10.1016/j.compeleceng.2023.108693

Hendzel, Z.; Penar, P. (2019): Zero-Sum Differential Game in Wheeled Mobile Robot Control. pp. 151–161, https://doi.org/10.1007/978-3-030-15857-6_16

Iberraken, D.; Gaurier, F.; Roux, J. C.; Chaballier, C.; Lenain, R. (2022): Autonomous Vineyard Tracking Using a Four-Wheel-Steering Mobile Robot and a 2D LiDAR. AgriEngineering,4(4), pp. 826–846, https://doi.org/10.3390/agriengineering404005

Jing, Y.; Liu, G.; Luo, C. (2021): Path tracking control with slip compensation of a global navigation satellite system based tractor-scraper land levelling system. Biosystems Engineering 212, pp. 360–377, https://doi.org/10.1016/j.biosystemseng.2021.11.010

Ju, C.; Kim, J.; Seol, J.; Il Son, H. (2022): A review on multirobot systems in agriculture. Computers and Electronics in Agriculture 202, p. 107336, https://doi.org/10.1016/j.compag.2022.107336

Kayacan, E.; Kayacan, E.; Ramon, H.; Kaynak, O.; Saeys, W. (2015): Towards Agrobots: Trajectory Control of an Autonomous Tractor Using Type-2 Fuzzy Logic Controllers. IEEE/ASME Transactions on Mechatronics 20(1), pp. 287–298, https://doi.org/10.1109/TMECH.2013.2291874

Keymasi Khalaji, A.; Jalalnezhad, M. (2018): Control of a wheeled robot in presence of sliding of wheels using adaptive backstepping method, vol. 18, no. 4, pp. 144–152, https://mme.modares.ac.ir/article-15-16838-en.html, accessed on 1 Dec 2023

Lenain, R.; Thuilot, B.; Cariou, C.; Martinet, P. (2006): Mobile robot control in presence of sliding: Application to agricultural vehicle path tracking. Proceedings of the 45th IEEE Conference on Decision and Control, pp. 6004–6009, https://doi.org/10.1109/CDC.2006.377520

Liu, D.; Wei, Q.; Wang, D.; Yang, X.; Li, H. (2017): Adaptive Dynamic Programming with Applications in Optimal Control. Springer Cham, https://doi.org/10.1007/978-3-319-50815-3

Liu, L. et al. (2024): Path Planning and Tracking Control of Tracked Agricultural Machinery Based on Improved A* and Fuzzy Control. Electronics 13(1), p. 188, https://doi.org/10.3390/electronics13010188

Luan, F.; Na, J.; Huang, Y.; Gao, G. (2019): Adaptive neural network control for robotic manipulators with guaranteed finite-time convergence. Neurocomputing 337, pp. 153–164, https://doi.org/10.1016/J.NEUCOM.2019.01.063

Modares, H.; Lewis, F. L.; Jiang, Z. P. (2015): H∞ Tracking Control of Completely Unknown Continuous-Time Systems via Off-Policy Reinforcement Learning. IEEE Transactions on Neural Networks and Learning Systems 26(10), pp. 2550–2562, https://doi.org/10.1109/TNNLS.2015.2441749

Monsalve, G.; Ltaief, N. B.; Amoriya, V.; Cardenas, A. (2022): Kinematic Navigation Control of Differential Drive Agricultural Robot. 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), pp. 1–6, https://doi.org/10.1109/CISTEM55808.2022.10043876

Moysiadis, V.; Tsolakis, N.; Katikaridis, D.; Sørensen, C. G.; Pearson, S.; Bochtis, D. (2020): Mobile Robotics in Agricultural Operations: A Narrative Review on Planning Aspects. Applied Sciences 10(10), p. 3453, https://doi.org/10.3390/app10103453

Nagasaka, Y.; Saito, H.; Tamaki, K.; Seki, M.; Kobayashi, K.; Taniwaki, K. (2009): An autonomous rice transplanter guided by global positioning system and inertial measurement unit. Journal of Field Robotics 26(6–7), pp. 537–548, https://doi.org/10.1002/rob.20294

Penar, P.; Hendzel, Z. (2022): Experimental Verification of the Differential Games and H∞ Theory in Tracking Control of a Wheeled Mobile Robot. Journal of Intelligent and Robotic Systems 104(4), p. 61, https://doi.org/10.1007/s10846-022-01584-6

Ravankar, A.; Ravankar, A. A.; Rawankar, A.; Hoshino, Y. (2021): Autonomous and Safe Navigation of Mobile Robots in Vineyard with Smooth Collision Avoidance. Agriculture 11(10), p. 954, https://doi.org/10.3390/agriculture11100954

Shamshiri, R. (2024): Electrical Tractors for Autonomous Farming. In: Shamshiri, R.; Hamed, I.(eds.): Mobile Robots for Digital Farming. CRC Press, Boca Raton, p. 89-106, https://doi.org/10.1201/9781003306283

Shamshiri, R.R., Navas, E., Dworak, V.; Schütte, T.; Weltzien, C., Auat Cheein, F. A. (2024): Internet of robotic things with a local LoRa network for teleoperation of an agricultural mobile robot using a digital shadow. Discov Appl Sci 6, 414, https://doi.org/10.1007/s42452-024-06106-7

Sun, J.; Li, Q.; Ding, S.; Xing, G.; Chen, L. (2023): Fixed-time generalized super-twisting control for path tracking of autonomous agricultural vehicles considering wheel slipping. Computers and Electronics in Agriculture 213, p. 108231, https://doi.org/10.1016/j.compag.2023.108231

Wang, S.; Yin, C.; Gao, J.; Sun, Q. (2020): Lateral Displacement Control for Agricultural Tractor Based on Cascade Control Structure. International Journal of Control Automation and Systems 18(9), pp. 2375–2385, https://doi.org/10.1007/s12555-019-0428-3

Yang, W.; Ding, S.; Ding, C. (2024): Fast Supertwisting Sliding Mode Control With Antipeaking Extended State Observer for Path-Tracking of Unmanned Agricultural Vehicles. IEEE Transactions on Industrial Electronics 71(10), pp. 1–10, https://doi.org/10.1109/TIE.2024.3355507

Zhang, T.; Jiao, X.; Lin, Z. (2022): Finite time trajectory tracking control of autonomous agricultural tractor integrated nonsingular fast terminal sliding mode and disturbance observer. Biosystems Engineering 219, pp. 153–164, https://doi.org/10.1016/j.biosystemseng.2022.04.020

Zhang, Z.; Kayacan, E.; Thompson, B.; Chowdhary, G. (2020): High precision control and deep learning-based corn stand counting algorithms for agricultural robot. Autonomous Robots 44(7), pp. 1289–1302, https://doi.org/10.1007/s10514-020-09915-y

Zhao, J.; Na, J.; Gao, G. (2022): Robust tracking control of uncertain nonlinear systems with adaptive dynamic programming. Neurocomputing 471, pp. 21–30, https://doi.org/10.1016/J.NEUCOM.2021.10.081

Zhou, B.; Su, X.; Yu, H.; Guo, W.; Zhang, Q. (2023): Research on Path Tracking of Articulated Steering Tractor Based on Modified Model Predictive Control. Agriculture 13(4), pp. 871, https://doi.org/10.3390/agriculture13040871

Downloads

Veröffentlicht

06.01.2025

Zitationsvorschlag

Azimi, A., Shamshiri, R. R., & Ghasemzadeh, A. (2025). Adaptives dynamisches Programmieren zur robusten Bahnverfolgung eines landwirtschaftlichen Roboters mithilfe kritischer neuronaler Netze. Agricultural engineering.Eu, 80(1). https://doi.org/10.15150/ae.2025.3327

Ausgabe

Rubrik

Fachartikel