Modellierung des Spritzfächers einer Pflanzenschutzdüse mit der Diskrete-Elemente-Methode

Autor/innen

  • Lukas Poppa
  • Kerstin Palm
  • Florian Schramm
  • Ludger Frerichs
  • Magnus Tomforde
  • Christoph Kämpfer
  • Jens Karl Wegener

DOI:

https://doi.org/10.15150/lt.2023.3289

Abstract

Die Prüfverfahren von Applikationstechnik für Pflanzenschutzmittel sind aufgrund der meist erforderlichen Praxisversuche sehr aufwendig. Aus diesem Grund ist der Einsatz von Simulationsmethoden wünschenswert. Ein Gesamtmodell zur Abbildung einer Pflanzenschutzdüse und des zugehörigen Spritzfächers konnte bisher nicht entwickelt werden. Jedoch existieren für einzelne Teilprozesse zur Simulation der Abdrift in der CFD (Computational Fluid Dynamics) bereits Modelle, die aber oft nicht vollständig validiert sind. Für ein Gesamtmodell eignet sich die Diskrete-Elemente-Methode (DEM) u. a. aufgrund der Analogie zwischen Tropfen und den simulierten Partikeln sowie der einfachen Kontakterkennung bei der Benetzung. Die Abbildung des Sprühkegels mit der DEM stellt die erste Herausforderung dar, ein Ansatz hierfür wird im vorliegenden Beitrag vorgestellt. Auf Messdaten basierend wird in der Simulation ein Tropfenspektrum 100 mm unterhalb der Düse erzeugt und zur Validierung das Spektrum sowie die Querverteilung 500 mm unterhalb der Düse gemessen. Das Tropfenspektrum zeigt eine hohe Übereinstimmung, während bei der Querverteilung leichte Abweichungen zur Messung vorliegen.

Literaturhinweise

Bissell, D.; Lai, W.; Stegmeir, M.; Troolin, D.R.; Pothos, S.; Lengsfeld, C.S. (2014): An Approach to Spray Characterization by Combination of Measurement Techniques. In: ILASS Americas 26th Annual Conference on Liquid Atomization and Spray Systems, Mai 2014, Portland

Bobzin, K.; Öte, M.; Knoch, M.A.; Alkhasli, I.; Dokhanchi, S.R. (2019): Modelling of particle impact using modified momentum source method in thermal spraying. IOP Conference Series: Materials Science and Engineering 480, https://doi.org/10.1088/1757-899X/480/1/012003

Börner, M.; Bück, A.; Tsotsas, E. (2017): DEM-CFD investigation of particle residence time distribution in top-spray fluidised bed granulation. Chemical Engineering Science 161, pp. 187–197, https://doi.org/10.1016/j.ces.2016.12.020

Börner, M.; Tsotsas, E. (2013): Spray zone demarcation in top-spray fluidised bed granulation by droplet detection methods. In: 6th International Granulation Workshop, June 2013, Sheffield, UK

Chen, Y.; Chen, W.; Li, B.; Zhang, G.; Zhang, W. (2017): Paint thickness simulation for painting robot trajectory planning: a review. Industrial Robot: An International Journal 44(5), pp. 629–638, https://doi.org/10.1108/IR-07-2016-0205

Cock, N. de; Massinon, M.; Salah, S.O.; Lebeau, F. (2017): Investigation on optimal spray properties for ground based agricultural applications using deposition and retention models. Biosystems Engineering 162, pp. 99–111, https://doi.org/10.1016/j.biosystemseng.2017.08.001

Delele, M.A.; Nuyttens, D.; Duga, A.T.; Ambaw, A.; Lebeau, F.; Nicolai, B.M.; Verboven, P. (2016): Predicting the dynamic impact behaviour of spray droplets on flat plant surfaces. Soft matter 12(34), pp. 7195–7211, https://doi.org/10.1039/c6sm00933f

Dorr, G.; Hanan, J.; Adkins, S.; Hewitt, A.; O’Donnell, C.; Noller, B. (2008): Spray deposition on plant surfaces: a modelling approach. Functional plant biology : FPB 35(10), pp. 988–996, https://doi.org/10.1071/FP08056

Dorr, G.J.; Forster, W.A.; Mayo, L.C.; McCue, S.W.; Kempthorne, D.M.; Hanan, J.; Turner, I.W.; Belward, J.A.; Young, J.; Zabkiewicz, J.A. (2016): Spray retention on whole plants: modelling, simulations and experiments. Crop Protection 88, pp. 118–130, https://doi.org/10.1016/j.cropro.2016.06.003

Dubey, A.; Hsia, R.; Saranteas, K.; Brone, D.; Misra, T.; Muzzio, F.J. (2011): Effect of speed, loading and spray pattern on coating variability in a pan coater. Chemical Engineering Science 66(21), pp. 5107–5115, https://doi.org/10.1016/j.ces.2011.07.010

Fengbo, Y.; Xinyu, X.; Ling, Z.; Zhu, S. (2017): Numerical simulation and experimental verification on downwash air flow of six-rotor agricultural unmanned aerial vehicle in hover. International Journal of Agricultural and Biological Engineering 10(4), pp. 41–53, https://doi.org/10.25165/j.ijabe.20171004.3077

Fogliati, M.; Fontana, D.; Garbero, M.; Vanni, M.; Baldi, G.; Dondè, R. (2006): CFD simulation of paint deposition in an air spray process. Journal of Coatings Technology and Research 3(2), pp. 117–125, https://doi.org/10.1007/s11998-006-0014-5

Freireich, B.; Li, J.; Litster, J.; Wassgren, C. (2011): Incorporating particle flow information from discrete element simulations in population balance models of mixer-coaters. Chemical Engineering Science 66(16), pp. 3592–3604, https://doi.org/10.1016/j.ces.2011.04.015

Fujimoto, A.; Satow, T.; Kishimoto, T. (2016): Simulation of spray distribution with boom sprayer considering effect of wind for agricultural cloud computing analysis. Engineering in Agriculture, Environment and Food 9(4), pp. 305–310, https://doi.org/10.1016/j.eaef.2016.04.001

Golla, B.; Strassemeyer, J.; Koch, H.; Rautmann, D. (2011): Eine Methode zur stochastischen Simulation von Abdriftwerten als Grundlage für eine georeferenzierte probabilistische Expositionsabschätzung von Pflanzenschutzmitteln. 33-44 Pages / Journal für Kulturpflanzen, Vol. 63 No. 2 (2011), https://doi.org/10.5073/JfK.2011.02.02

Guo, Q.; Zhu, Y.; Tang, Y.; Hou, C.; He, Y.; Zhuang, J.; Zheng, Y.; Luo, S. (2020): CFD simulation and experimental verification of the spatial and temporal distributions of the downwash airflow of a quad-rotor agricultural UAV in hover. Computers and Electronics in Agriculture 172, https://doi.org/10.1016/j.compag.2020.105343

Hobson, P.A.; Miller, P.; Walklate, P.J.; Tuck, C.R.; Western, N.M. (1993): Spray Drift from Hydraulic Spray Nozzles: the Use of a Computer Simulation Model to Examine Factors Influencing Drift. Journal of Agricultural Engineering Research 54(4), pp. 293–305, https://doi.org/10.1006/jaer.1993.1022

Holterman, H.J.; Michielsen, J.; van de Zande, J.C. (1998a): Spray drift in crop protection: validation and usage of a drift model. Paper no. 98-A-012, 24.-28.08.1998, Oslo

Holterman, H.J.; van de Zande, J.C.; Porskamp H.A.J.; Huijsmans, J. (1997): Modelling spray drift from boom sprayers. Computers and Electronics in Agriculture 19, pp. 1–22

Holterman, H.J.; van de Zande, J.C.; Porskamp H.A.J.; Michielsen, J. (1998b): IDEFICS: a physical model of spray drift from boom sprayers in agriculture. In: ILASS Europe, Institute for Liquid Atomization and SpraySystems; The Atomization and Sprays Research Group UMIST, 6.-8.7.1998, Manchester, pp. 493–498

Hong, S.-W.; Zhao, L.; Zhu, H. (2018): CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: Tree deposition and off-target losses. Atmospheric Environment 175, pp. 109–119, https://doi.org/10.1016/j.atmosenv.2017.12.001

Julius Kühn-Institut (2013): JKI-Richtlinie 7-1.5 für die Prüfung von Pflanzenschutzgeräten. Messung der direkten Abdrift beim Ausbringen von flüssigen Pflanzenschutzmitteln im Freiland, Braunschweig

Julius Kühn-Institut (2021): Institut für Anwendungstechnik im Pflanzenschutz. Geräte und Ausstattungen. https://www.julius-kuehn.de/at/geraete-und-ausstattungen/, accessed on 15 July 2021

Kieckhefen, P.; Lichtenegger, T.; Pietsch, S.; Pirker, S.; Heinrich, S. (2019): Simulation of spray coating in a spouted bed using recurrence CFD. Particuology 42, pp. 92–103, https://doi.org/10.1016/j.partic.2018.01.008

Kluza, P.A.; Kuna-Broniowska, I.; Parafiniuk, S. (2019): Modeling and Prediction of the Uniformity of Spray Liquid Coverage from Flat Fan Spray Nozzles. Sustainability 11(23), https://doi.org/10.3390/su11236716

Li, Y.; Li, D.; Bie, S.; Wang, Z.; Zhang, H.; Tang, X.; Zhen, Z. (2018): Numerical simulation for fluid droplet impact on discrete particles with coupled SPH-DEM method. International Journal of Numerical Methods for Heat & Fluid Flow 28(11), pp. 2581–2605, https://doi.org/10.1108/HFF-11-2017-0464

Mayo, L.C.; McCue, S.W.; Moroney, T.J.; Forster, W.A.; Kempthorne, D.M.; Belward, J.A.; Turner, I.W. (2015): Simulating droplet motion on virtual leaf surfaces. Royal Society open science 2(5), p. 140528, https://doi.org/10.1098/rsos.140528

Mukherjee, D.; Zohdi, T.I. (2015): A discrete element based simulation framework to investigate particulate spray deposition processes. Journal of Computational Physics 290, pp. 298–317, https://doi.org/10.1016/j.jcp.2015.02.034

Ni, M.; Wang, H.; Liu, X.; Liao, Y.; Fu, L.; Wu, Q.; Mu, J.; Chen, X.; Li, J. (2021): Design of Variable Spray System for Plant Protection UAV Based on CFD Simulation and Regression Analysis. Sensors (Basel, Switzerland) 21(2), https://doi.org/10.3390/s21020638

Omar, Z.; Qiang, K.Y.; Mohd, S.; Rosly, N. (2016): CFD Simulation of Aerial Crop Spraying. IOP Conference Series: Materials Science and Engineering 160, https://doi.org/10.1088/1757-899X/160/1/012028

Oxford Lasers (2021): VisiSize N60 - Spray Characterisation Tool | Oxford Lasers. https://www.oxfordlasers.com/laser-imaging/visisize-n60, accessed on 21 July 2021

Parra, H.G.; Morales, V.D.A.; Garcia, E.E.G. (2019): Multiphase CFD Simulation of Photogrammetry 3D Model for UAV Crop Spraying. In: New Knowledge in Information Systems and Technologies. Hg. Rocha, Á.; Adeli, H. et al., Cham, Springer International Publishing, pp. 812–822

Pasha, M.; Hare, C.; Ghadiri, M.; Gunadi, A.; Piccione, P.M. (2017): Inter-particle coating variability in a rotary batch seed coater. Chemical Engineering Research and Design 120, pp. 92–101, https://doi.org/10.1016/j.cherd.2017.01.033

Saeedipour, M. (2019): Atomization of two colliding micro liquid jets in a respiratory inhaler: A computational study. In: 29th European Conference on Liquid Atomization and Spray Systems, 2-4.09.2019, Paris

Schmelzle, S.; Asylbekov, E.; Radel, B.; Nirschl, H. (2018): Modelling of partially wet particles in DEM simulations of a solid mixing process. Powder Technology (338), pp. 354–364

Schmidt, M. (1980): Einfluß physikalischer Flüssigkeitseigenschalten auf die Zerstäubung im Pflanzenschutz. Grundlagen der Landtechnik 30(4), S. 126–134, https://440ejournals.uni-hohenheim.de/index.php/Grundlagen/article/view/398

Shen, B.; Ye, Q.; Tiedje, O.; Domnick, J. (2019): Simulation of the primary breakup of non-Newtonian liquids at a high-speed rotary bell atomizer for spray painting processes using a VOF-Lagrangian hybrid model. In: 29th European Conference on Liquid Atomization and Spray Systems, 2-4.09.2019, Paris

Vulgarakis Minov, S. (2015): Integration of imaging techniques for the quantitative characterization of pesticide sprays. Dissertation, Ghent University

Washino, K.; Miyazaki, K.; Tsuji, T.; Tanaka, T. (2016): A new contact liquid dispersion model for discrete particle simulation. Chemical Engineering Research and Design 110, pp. 123–130, https://doi.org/10.1016/j.cherd.2016.02.022

Wu, H.; Xie, X.; Liu, M.; Chen, C.; Liao, H.; Zhang, Y.; Deng, S. (2020): A new approach to simulate coating thickness in cold spray. Surface and Coatings Technology 382, https://doi.org/10.1016/j.surfcoat.2019.125151

Xie, X.; Wang, Y. (2019): Research on Distribution Properties of Coating Film Thickness from Air Spraying Gun-Based on Numerical Simulation. Coatings 9(11), https://doi.org/10.3390/coatings9110721

Yang, F.; Xue, X.; Cai, C.; Sun, Z.; Zhou, Q. (2018): Numerical Simulation and Analysis on Spray Drift Movement of Multirotor Plant Protection Unmanned Aerial Vehicle. Energies 11(9), https://doi.org/10.3390/en11092399

Ye, Q.; Pulli, K. (2017): Numerical and Experimental Investigation on the Spray Coating Process Using a Pneumatic Atomizer: Influences of Operating Conditions and Target Geometries. Coatings 7(1), https://doi.org/10.3390/coatings7010013

Ye, Q.; Shen, B.; Tiedje, O.; Bauernhansl, T.; Domnick, J. (2015): Numerical and Experimental Study of Spray Coating Using Air-Assisted High-Pressure Atomizers. Atomization and Sprays 25(8), pp. 643–656, https://doi.org/10.1615/AtomizSpr.2015010791

Zhang, B.; Tang, Q.; Chen, L.; Zhang, R.; Xu, M. (2018): Numerical simulation of spray drift and deposition from a crop spraying aircraft using a CFD approach. Biosystems Engineering 166, pp. 184–199, https://doi.org/10.1016/j.biosystemseng.2017.11.017

Veröffentlicht

13.04.2023

Zitationsvorschlag

Poppa, L., Palm, K., Schramm, F., Frerichs, L., Tomforde, M., Kämpfer, C., & Wegener, J. K. (2023). Modellierung des Spritzfächers einer Pflanzenschutzdüse mit der Diskrete-Elemente-Methode. Agricultural engineering.Eu, 78(2). https://doi.org/10.15150/lt.2023.3289

Ausgabe

Rubrik

Fachartikel