Auswirkung einer Verdunstungskühlung auf Hitzestressreduktion und Aktivitätsverhalten von hochleistenden Milchkühen

Autor/innen

  • Severino Pinto
  • Alisa Sergeeva
  • Christian Ammon
  • Vitaly Belik
  • Thomas Amon
  • Gundula Hoffmann

DOI:

https://doi.org/10.15150/ae.2024.3324

Abstract

Ziel dieser Studie war es, den Einfluss der Verdunstungskühlung auf die Atemfrequenz (AF) und das Aktivitätsverhalten von Milchkühen unter heißen und trockenen Bedingungen im Mittelmeerraum zu untersuchen. Zwölf hochleistende Holstein-Milchkühe (2.–5. Laktation) wurden randomisiert ausgewählt. Jede Kuh wurde mit einem Pedometer ausgestattet, um verschiedene Aktivitätsmerkmale im Zusammenhang mit dem „Ruhe-“ und „Bewegungsverhalten“ zu überwachen. Die Lufttemperatur und die relative Luftfeuchtigkeit wurden aufgezeichnet und der Temperatur-Luftfeuchtigkeits-Index (THI) wurde berechnet. Ein lineares gemischtes Modell mit wiederholten Messungen wurde erstellt, um den Einfluss des THIs und der Kühlung auf die Eigenschaften der Tiere zu testen. Die AF sank bei der zweiten Abkühlung (54,6 ± 10,7) im Vergleich zu den Reaktionen der Kühe eine Stunde zuvor (74,6 ± 13,1 Atemzüge pro Minute, p<0,001). Die Liegezeit nahm nach den Kühlungen tendenziell zu, insbesondere nach der abendlichen Kühlung (39 ± 4,76 Atemzüge pro Minute; p<0,001). Die Verdunstungskühlung förderte die Reduktion von Hitzestress, sichtbar durch niedrigere AF-Werte und das gesteigerte Liegeverhalten bei Milchkühen unter heißen und trockenen Klimabedingungen.

Literaturhinweise

Allen, J. D.; L. W. Hall; R. J. Collier; J. F. Smith (2015): Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. Journal of Dairy Science 98(1), pp. 118–127, https://doi.org/10.3168/jds.2013-7704

Berman, A. (2005): Estimates of heat stress relief needs for Holstein dairy cows. Journal of Animal Science 83(6), pp. 1377–1384

Berman, A. (2006): Extending the potential of evaporative cooling for heat-stress relief. Journal of Dairy Science 89(10), pp. 3817–3825, https://doi.org/10.3168/jds.S0022-0302(06)72423-7

Bernabucci, U.; N. Lacetera; L. H. Baumgard; R. P. Rhoads; B. Ronchi; Nardone, A. (2010): Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 4(7), pp. 1167–1183, https://doi.org/10.1017/S175173111000090X

Brzozowska, A.; M. Lukaszewicz; G. Sender; D. Kolasinska; Oprzadek, J. (2014): Locomotor activity of dairy cows in relation to season and lactation. Applied Animal Behaviour Science 156, pp. 6–11, https://doi.org/10.1016/j.applanim.2014.04.009

Ferreira, F. C.; R. S. Gennari; G. E. Dahl; De Vries, A. (2016): Economic feasibility of cooling dry cows across the United States. Journal of Dairy Science 99(12), pp. 9931–9941, https://doi.org/10.3168/jds.2016-11566

Foroushani, S.; Amon, T. (2022): Thermodynamic assessment of heat stress in dairy cattle: lessons from human biometeorology. International Journal of Biometeorology 66(9), pp. 1811–1827, https://doi.org/10.1007/s00484-022-02321-2

Fournel, S.; V. Ouellet; Charbonneau, E. (2017): Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review. Animals 7(37), pp. 1–23, https://doi.org/ARTN 3710.3390/ani7050037

Frigeri, K. D. M.; K. D. Kachinski; N. d. C. Ghisi; M. Deniz; F. A. Damasceno; M. Barbari; P. Herbut; Vieira, F. M. C. (2023): Effects of Heat Stress in Dairy Cows Raised in the Confined System: A Scientometric Review. Animals 13(3), https://doi.org/10.3390/ani13030350

Galán, E.; P. Llonch; A. Villagrá; H. Levit; S. Pinto; del Prado, A. (2018): A systematic review of non-productivity-related animal-based indicators of heat stress resilience in dairy cattle. Plos One 13(11), pp. e0206520, https://doi.org/10.1371/journal.pone.0206520

Gaughan, J. B.; S. M. Holt; G. L. Hahn; T. L. Mader; Eigenberg, R. (2000): Respiration rate – Is it a good measure of heat stress in cattle? Asian-Australasian Journal of Animal Sciences 13, pp. 329–332

Heinicke, J.; G. Hoffmann; C. Ammon; B. Amon; Amon, T. (2018): Effects of the daily heat load duration exceeding determined heat load thresholds on activity traits of lactating dairy cows. Journal of Thermal Biology 77, pp. 67–74, https://doi.org/10.1016/j.jtherbio.2018.08.012

Heinicke, J.; S. Ibscher; V. Belik; Amon, T. (2019): Cow individual activity response to the accumulation of heat load duration. Journal of Thermal Biology 82, pp. 23–32, https://doi.org/10.1016/j.jtherbio.2019.03.011

Herbut, P.; Angrecka, S. (2018): Relationship between THI level and dairy cows’ behaviour during summer period. Italian Journal of Animal Science 17(1), pp. 226–233, https://doi.org/10.1080/1828051X.2017.1333892

Hoffmann, G.; P. Herbut; S. Pinto; J. Heinicke; B. Kuhla, and T. Amon. (2020): Animal-related, non-invasive indicators for determining heat stress in dairy cows. Biosystems Engineering 199, pp. 83–96, https://doi.org/10.1016/j.biosystemseng.2019.10.017

Honig, H.; J. Miron; H. Lehrer; S. Jackoby; M. Zachut; A. Zinou; Y. Portnick; Moallem, U. (2012): Performance and welfare of high-yielding dairy cows subjected to 5 or 8 cooling sessions daily under hot and humid climate. Journal of Dairy Science 95(7), pp. 3736-3742, https://doi.org/10.3168/jds.2011-5054

Jackson, P.; Cockcroft, P. (2008): Clinical Examination of Farm Animals. Wiley

Kendall, P. E.; G. A. Verkerk; J. R. Webster; Tucker, C. B. (2007): Sprinklers and shade cool cows and reduce insect-avoidance behavior in pasture-based dairy systems. Journal of Dairy Science 90(8), pp. 3671–3680, https://doi.org/10.3168/jds.2006-766

Legates, J. E.; B. R. Farthing; R. B. Casady; Barrada, M. S. (1991): Body temperature and respiratory rate of lactating dairy cattle under field and chamber conditions. Journal of Dairy Science 74(8), pp. 2491–2500, https://doi.org/10.3168/jds.S0022-0302(91)78426-9

Levit, H.; S. Pinto; T. Amon; E. Gershon; A. Kleinjan-Elazary; V. Bloch; Y. A. Ben Meir; Y. Portnik; S. Jacoby; A. Arnin; J. Miron; Halachmi, I. (2021): Dynamic cooling strategy based on individual animal response mitigated heat stress in dairy cows. Animal 15(2), pp. 100093, https://doi.org/10.1016/j.animal.2020.100093

NRC National Research Council (1971): A Guide to Environmental Research on Animals. Washington, DC, The National Academies Press

Ortiz, X. A.; J. F. Smith; F. Rojano; C. Y. Choi; J. Bruer; T. Steele; N. Schuring; J. Allen; Collier, R. J. (2015a): Evaluation of conductive cooling of lactating dairy cows under controlled environmental conditions. Journal of Dairy Science 98(3), pp. 1759–1771, https://doi.org/10.3168/jds.2014-8583

Ortiz, X. A.; J. F. Smith; F. Villar; L. Hall; J. Allen; A. Oddy; A. al-Haddad; P. Lyle; Collier, R. J. (2015b): A comparison of 2 evaporative cooling systems on a commercial dairy farm in Saudi Arabia. Journal of Dairy Science 98(12), pp. 8710–8722, https://doi.org/10.3168/jds.2015-9616

Ouellet, V.; I. M. Toledo; B. Dado-Senn; G. E. Dahl; Laporta, J. (2021): Critical Temperature-Humidity Index Thresholds for Dry Cows in a Subtropical Climate. Frontiers in Animal Science 2, https://doi.org/10.3389/fanim.2021.706636

Overton, M. W.; W. M. Sischo; G. D. Temple; Moore, D. A. (2002): Using time-lapse video photography to assess dairy cattle lying behavior in a free-stall barn. Journal of Dairy Science 85(9), pp. 2407–2413, https://doi.org/10.3168/jds.S0022-0302(02)74323-3

Palacios, C.; J. Plaza; Abecia, J. A. (2021): A High Cattle-Grazing Density Alters Circadian Rhythmicity of Temperature, Heart Rate, and Activity as Measured by Implantable Bio-Loggers. Frontiers in Physiology 12, pp. 707222, https://doi.org/10.3389/fphys.2021.707222

Pilatti, J. A.; F. M. C. Vieira; F. Rankrape; Vismara, E. S. (2019): Diurnal behaviors and herd characteristics of dairy cows housed in a compost-bedded pack barn system under hot and humid conditions. Animal 13(2), pp. 399–406, https://doi.org/10.1017/S1751731118001088

Pinto, S.; G. Hoffmann; C. Ammon; Amon, T. (2020): Critical THI thresholds based on the physiological parameters of lactating dairy cows. Journal of Thermal Biology 88, pp. 102523, https://doi.org/10.1016/j.jtherbio.2020.102523

Pinto, S.; G. Hoffmann; C. Ammon; W. Heuwieser; H. Levit; I. Halachmi; Amon, T. (2019): Effect of two cooling frequencies on respiration rate in lactating dairy cows under hot and humid climate conditions. Annals of Animal Science 19(3), https://doi.org/10.2478/aoas-2019-0026

Polsky, L.; von Keyserlingk, M. A. G. (2017): Invited review: Effects of heat stress on dairy cattle welfare. Journal of Dairy Science 100(11), pp. 8645–8657, https://doi.org/10.3168/jds.2017-12651

Roth, Z. (2022): Cooling is the predominant strategy to alleviate the effects of heat stress on dairy cows. Reproduction in Domestic Animals 57 Suppl 1, pp. 16–22, https://doi.org/10.1111/rda.13765

Segnalini, M.; U. Bernabucci; A. Vitali; A. Nardone; Lacetera, N. (2013): Temperature humidity index scenarios in the Mediterranean basin. International Journal Biometeorology 57(3), pp. 451–458, https://doi.org/10.1007/s00484-012-0571-5

Shehab-El-Deen, M. A.; M. S. Fadel; A. Van Soom; S. Y. Saleh; D. Maes; Leroy, J. L. (2010): Circadian rhythm of metabolic changes associated with summer heat stress in high-producing dairy cattle. Tropical Animal Health and Production 42(6), pp. 1119–1125, https://doi.org/10.1007/s11250-010-9534-1

Silanikove, N. (2000): Effects of heat stress on the welfare of extensively managed domestic ruminants. Livestock Production Science. 67(1–2), pp. 1–18, https://doi.org/10.1016/S0301-6226(00)00162-7

Spiers, D. E.; J. N. Spain; M. R. Ellersieck; Lucy, M. C. (2018): Strategic application of convective cooling to maximize the thermal gradient and reduce heat stress response in dairy cows. Journal of Dairy Science 101(9), pp. 8269–8283, https://doi.org/10.3168/jds.2017-14283

Spiers, D. E.; J. N. Spain; M. J. Leonard; Lucy, M.C. (2001): Effect of Cooling Strategy and Night Temperature on Dairy Cow Performance During Heat Stress. In: Proc. Pp. 45–55 in Livestock Environment VI: Proceedings of the 6th International Symposium (21–23 May 2001, Louisville, Kentucky, USA) ed. Richard R. Stowell, Ray Bucklin, and Robert W. Bottcher. ASABE, St. Joseph, MI

St-Pierre, N. R.; B. Cobanov; Schnitkey, G. (2003): Economic Losses from Heat Stress by US Livestock Industries. Journal of Dairy Science 86, pp. E52–E77, https://doi.org/10.3168/jds.S0022-0302(03)74040-5

Stone, A. E.; B. W. Jones; C. A. Becker; Bewley, J. M. (2017): Influence of breed, milk yield, and temperature-humidity index on dairy cow lying time, neck activity, reticulorumen temperature, and rumination behavior. Journal of Dairy Science 100(3), pp. 2395–2403, https://doi.org/10.3168/jds.2016-11607

Tresoldi, G.; K. E. Schutz; Tucker, C. B. (2018): Cooling cows with sprinklers: Spray duration affects physiological responses to heat load. Journal of Dairy Science 101(5), pp. 4412–4423, https://doi.org/10.3168/jds.2017-13806

Tucker, C. B.; A. R. Rogers; Schutz, K. E. (2008): Effect of solar radiation on dairy cattle behaviour, use of shade and body temperature in a pasture-based system. Applied Animal Behaviour Science 109(2–4), pp. 141–154, https://doi.org/10.1016/j.applanim.2007.03.015

Valtorta, S. E.; Gallardo, M. R. (2004): Evaporative cooling for Holstein dairy cows under grazing conditions. International Journal Biometeorology 48(4), pp. 213–217, https://doi.org/10.1007/s00484-003-0196-9

Wang, X. S.; G. Q. Zhang; Choi, C. Y. (2018): Effect of airflow speed and direction on convective heat transfer of standing and reclining cows. Biosystems Engineering 167, pp. 87–98, https://doi.org/10.1016/j.biosystemseng.2017.12.011

West, J. W. (2003): Effects of heat-stress on production in dairy cattle. Journal of Dairy Science 86(6), pp. 2131–2144, https://doi.org/10.3168/jds.S0022-0302(03)73803-X

Wilson, A. M.; T. C. Wright; J. P. Cant; Osborne, V. R. (2023): Behavioral and physiological responses to an inspired-air supplemental cooling system for dairy cows in free-stall housing. Animal 17(8), pp. 100887, https://doi.org/10.1016/j.animal.2023.100887

Zhou, M.; A. J. A. Aarnink; T. T. T. Huynh; I. D. E. van Dixhoorn; Koerkamp, P. W. G. G. (2022a): Effects of increasing air temperature on physiological and productive responses of dairy cows at different relative humidity and air velocity levels. Journal of Dairy Science 105(2), pp. 1701–1716, https://doi.org/10.3168/jds.2021-21164

Zhou, M.; T. T. T. Huynh; P. W. G. Groot Koerkamp; I. D. E. van Dixhoorn; T. Amon; Aarnink, A. J. A. (2022b): Effects of increasing air temperature on skin and respiration heat loss from dairy cows at different relative humidity and air velocity levels. Journal of Dairy Science 105(8), pp. 7061–7078, https://doi.org/10.3168/jds.2021-21683

Downloads

Veröffentlicht

18.12.2024

Zitationsvorschlag

Pinto, S., Sergeeva, A., Ammon, C., Belik, V., Amon, T., & Hoffmann, G. (2024). Auswirkung einer Verdunstungskühlung auf Hitzestressreduktion und Aktivitätsverhalten von hochleistenden Milchkühen. Agricultural engineering.Eu, 79(4). https://doi.org/10.15150/ae.2024.3324

Ausgabe

Rubrik

Fachartikel

Am häufigsten gelesenen Artikel dieser/dieses Autor/in

<< < 1 2 3