Die Determinanten der Einführung von unbemannten Luftfahrzeugen (UAV) und der Status quo des UAV-gestützten Mustermanagements in der chinesischen Landwirtschaft: Erkenntnisse aus Experteninterviews

Autor/innen

  • Xiuhao Quan
  • Zhichong Wang
  • Thomas Daum
  • Xiongkui He
  • Reiner Doluschitz

DOI:

https://doi.org/10.15150/ae.2024.3318

Abstract

In China werden unbemannte Luftfahrzeuge (UAVs) zunehmend für die breitflächige Ausbringung landwirtschaftlicher Betriebsmittel wie Pestizide, Düngemittel und Saatgut eingesetzt. UAVs bieten Potenzial für eine ortsspezifische Präzisionslandwirtschaft und ermöglichen ein präzises Management von Düngung, Pflanzenschutz und Bewässerung, um den ökologischen Fußabdruck der Landwirtschaft zu reduzieren. Es gibt zwar Forschung zur Nutzung von UAVs in der Landwirtschaft, jedoch ist weniger über die UAV-gestützte Präzisionslandwirtschaft, insbesondere das Mustermanagement, bekannt. Um diese Forschungslücken zu schließen, wurden in dieser Arbeit strukturierte, tiefgehende Interviews mit 18 Experten aus verschiedenen Bereichen, die mit UAVs in der chinesischen Landwirtschaft in Verbindung stehen, durchgeführt. Ziel war es, den Status quo, die Treiber und die Hemmnisse der Einführung von UAVs zu untersuchen, mit einem besonderen Fokus auf die UAV-gestützte Präzisionslandwirtschaft und das Mustermanagement. Die Ergebnisse zeigen, dass die Einführung von UAVs in China durch die Produktionscharakteristika der Landwirte, deren Wahrnehmung von UAVs und soziale Faktoren beeinflusst wird. Die UAV-gestützte Präzisionslandwirtschaft befindet sich in China noch im Anfangsstadium, und die Förderung dieses Ansatzes muss weiterhin technische Barrieren wie die Verbesserung der Genauigkeit von Pflanzenmessungen, die Entwicklung von Echtzeit-UAV-Positionierungssystemen und die Erhöhung der Reaktionszeit von variablen Sprühsystemen sowie sozioökonomische Barrieren wie das begrenzte UAV-bezogene Wissen der Landwirte, kleine Betriebsgrößen und fehlende technische Unterstützung überwinden.

Literaturhinweise

Abd. Kharim, M. N.; Wayayok, A.; Mohamed Shariff, A. R.; Abdullah, A. F.; Husin, E. M. (2019): Droplet deposition density of organic liquid fertilizer at low altitude UAV aerial spraying in rice cultivation. Computers and Electronics in Agriculture 167, p. 105045, https://doi.org/10.1016/j.compag.2019.105045

Andújar, D.; Moreno, H.; Bengochea-Guevara, J. M.; de Castro, A.; Ribeiro, A. (2019): Aerial imagery or on-ground detection? An economic analysis for vineyard crops. Computers and Electronics in Agriculture 157, pp. 351–358, https://doi.org/10.1016/j.compag.2019.01.007

Biglia, A.; Grella, M.; Bloise, N.; Comba, L.; Mozzanini, E.; Sopegno, A.; Pittarello, M.; Dicembrini, E.; Alcatrão, L. E.; Guglieri, G.; Balsari, P.; Aimonino, D. R.; Gay, P. (2022): UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses. Science of The Total Environment 845, p. 157292, https://doi.org/10.1016/j.scitotenv.2022.157292

Chen, Q.; Wachenheim, C.; Zheng, S. (2020): Land scale, cooperative membership and benefits information: Unmanned aerial vehicle adoption in China. Sustainable Futures 2, p. 100025, https://doi.org/10.1016/j.sftr.2020.100025

China Agricultural Machinery Industry Association (2021): China Agricultural Machinery Industry Yearbook. Machinery Industry Press

Chung, J. (2019): China’s Agriculture Drone Revolution-Disruption in the Agriculture Ecosystem. Ipsos Business Consulting, Center of Excellence for Commercial Drone Adoption

Colaço, A. F.; Bramley, R. G. V. (2018): Do crop sensors promote improved nitrogen management in grain crops? Field Crops Research 218, pp. 126–140, https://doi.org/10.1016/j.fcr.2018.01.007

Faiçal, B. S.; Costa, F. G.; Pessin, G.; Ueyama, J.; Freitas, H.; Colombo, A.; Fini, P. H.; Villas, L.; Osório, F. S.; Vargas, P. A.; Braun, T. (2014): The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides. Journal of Systems Architecture 60, pp. 393–404, https://doi.org/10.1016/j.sysarc.2014.01.004

Han, X.; Lei, Y.; Zhen, T.; Huang, Y. (2022): Analysis of factors influencing farmers’ willingness to continue using plant protection UAV based on TAM. Journal of Southwest Minzu University (Natural Science Edition) 48, pp. 332–339, http://dx.doi.org/10.11920/xnmdzk.2022.03.014

Huang, X.; Zhang, S.; Luo, C.; Li, W.; Liao, Y. (2020): Design and Experimentation of an Aerial Seeding System for Rapeseed Based on an Air-Assisted Centralized Metering Device and a Multi-Rotor Crop Protection UAV. Applied Sciences 10, pp. 8854, https://doi.org/10.3390/app10248854

Hu, P.; Zhang, R.; Yang, J.; Chen, L. (2022): Development Status and Key Technologies of Plant Protection UAVs in China: A Review. Drones 6(11), https://doi.org/10.3390/drones6110354

Kerry, R.; Escolà, A. (Ed.) (2021): Sensing Approaches for Precision Agriculture. Progress in Precision Agriculture. Cham, Springer International Publishing, https://doi.org/10.1007/978-3-030-78431-7

Lan, Y.; CHEN, S.; DENG, J. (2019): Development situation and problem analysis of plant protection unmanned aerial vehicle in China. Journal of South China Agricultural University, pp. 217–225, https://doi.org/10.7671/j.issn.1001-411X.201905082

Li, W.; Clark, B.; Taylor, J. A.; Kendall, H.; Jones, G.; Li, Z.; Jin, S.; Zhao, C.; Yang, G.; Shuai, C.; Cheng, X.; Chen, J.; Yang, H.; Frewer, L. J. (2020): A hybrid modelling approach to understanding adoption of precision agriculture technologies in Chinese cropping systems. Computers and Electronics in Agriculture 172, p. 105305, https://doi.org/10.1016/j.compag.2020.105305

Li, P.; Feng, H.; Wang, L.; Zhang, Y.; Bai, S. (2022a): The control effect and key period of unmanned air vehicle spraying on Aphis of different occurrence degrees in cotton fields in Southern Xinjiang. China Cotton 49(4), https://doi.org/10.11963/cc20220042

Li, H.; Peng, S.; Huang, D. (2022b): Policy effect and optimization strategy for plant protection UAV subsidy system in southern China. Journal of China Agricultural University, pp. 287–296, https://doi.org/10.11841/j.issn.1007-4333.2022.01.26

Maimaitijiang, M.; Sagan, V.; Sidike, P.; Daloye, A. M.; Erkbol, H.; Fritschi, F. B. (2020): Crop Monitoring Using Satellite/UAV Data Fusion and Machine Learning. Remote Sensing 12(9), p. 1357, https://doi.org/10.3390/rs12091357

Mayring, P. (2021): Qualitative Content Analysis: A Step-by-Step Guide. Sage Publications

Michels, M.; von Hobe, C.-F.; Musshoff, O. (2020): A trans-theoretical model for the adoption of drones by large-scale German farmers. Journal of Rural Studies 75, pp. 80–88, https://doi.org/10.1016/j.jrurstud.2020.01.005

Michels, M.; von Hobe, C.-F.; Weller von Ahlefeld, P. J.; Musshoff, O. (2021): The adoption of drones in German agriculture: a structural equation model. Precision Agriculture 22, pp. 1728–1748, https://doi.org/10.1007/s11119-021-09809-8

Ministry of Agriculture and Rural Affairs of People’s Republic of China (2017): Launching subsidies for the purchase of agricultural unmanned aerial vehicles (UAVs) and regulating the application of plant protection UAVs in some provinces of China. http://www.njhs.moa.gov.cn/tzggjzcjd/201711/t20171102_6314837.htm, accessed on 2 Sept 2024

Ministry of Agriculture and Rural Affairs of People’s Republic of China (2019): Development of agricultural plant protection unmanned aerial vehicles. Ministry of Agriculture and Rural Affairs, http://www.njhs.moa.gov.cn/nyjxhqk/201905/t20190531_6315977.htm, accessed on 2 Sept 2024

Palinkas, L. A.; Horwitz, S. M.; Green, C. A.; Wisdom, J. P.; Duan, N.; Hoagwood, K. (2015): Purposeful Sampling for Qualitative Data Collection and Analysis in Mixed Method Implementation Research. Administration and Policy in Mental Health and Mental Health Services Research 42, pp. 533–544, https://doi.org/10.1007/s10488-013-0528-y

Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. (2020): A compilation of UAV applications for precision agriculture. Computer Networks 172, p. 107148, https://doi.org/10.1016/j.comnet.2020.107148

Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. (2022): Drones in agriculture: A review and bibliometric analysis. Computers and Electronics in Agriculture 198, p. 107017, https://doi.org/10.1016/j.compag.2022.107017

Roma, E.; Laudicina, V. A.; Vallone, M.; Catania, P. (2023): Application of Precision Agriculture for the Sustainable Management of Fertilization in Olive Groves. Agronomy 13, p. 324, https://doi.org/10.3390/agronomy13020324

Sishodia, R. P.; Ray, R. L.; Singh, S. K. (2020): Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sensing 12, p. 3136, https://doi.org/10.3390/rs12193136

Skevas, T.; Kalaitzandonakes, N. (2020): Farmer awareness, perceptions and adoption of unmanned aerial vehicles: evidence from Missouri. International Food and Agribusiness Management Review 23, p. 469–485, https://doi.org/10.22434/IFAMR2019.0151

Späti, K.; Huber, R.; Finger, R. (2021): Benefits of Increasing Information Accuracy in Variable Rate Technologies. Ecological Economics 185, p. 107047, https://doi.org/10.1016/j.ecolecon.2021.107047

Spohrer, K. (2019): PMC- A Holistic Approach to Sustainable, Location-Specific Agriculture in Western China. https://www.bmbf-client.de/en/project/PMC, accessed on 3 Jan 2023

Sylvester, G. (2018): E-agriculture in action: drones for agriculture. Bangkok, Food and Agriculture Organization of the United Nations and International Telecommunication Union

Tsouros, D. C.; Bibi, S.; Sarigiannidis, P. G. (2019a): A Review on UAV-Based Applications for Precision Agriculture. Information 10, p. 349, https://doi.org/10.3390/info10110349

Tsouros, D. C.; Triantafyllou, A.; Bibi, S.; Sarigannidis, P. G. (2019b): Data acquisition and analysis methods in uav-based applications for precision agriculture. In: 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS). Santorini Island, Greece: IEEE, pp. 377–384, https://doi.org/10.1109/DCOSS.2019.00080

Wachenheim, C.; Fan, L.; Zheng, S. (2021): Adoption of unmanned aerial vehicles for pesticide application: Role of social network, resource endowment, and perceptions. Technology in Society 64, p. 101470, https://doi.org/10.1016/j.techsoc.2020.101470

Wang, G.; Han, Y.; Li, X.; Andaloro, J.; Chen, P.; Hoffmann, W. C.; Han, X.; Chen, S.; Lan, Y. (2020): Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Science of The Total Environment 737, p. 139793, https://doi.org/10.1016/j.scitotenv.2020.139793

Wang, L.; Huang, X.; Li, W.; Yan, K.; Han, Y.; Zhang, Y.; Pawlowski, L.; Lan, Y. (2022): Progress in Agricultural Unmanned Aerial Vehicles (UAVs) Applied in China and Prospects for Poland. Agriculture 12, p. 397, https://doi.org/10.3390/agriculture12030397

Xie, T.; Li, J.; Yang, C.; Jiang, Z.; Chen, Y.; Guo, L.; Zhang, J. (2021): Crop height estimation based on UAV images: Methods, errors, and strategies. Computers and Electronics in Agriculture 185, p. 106155, https://doi.org/10.1016/j.compag.2021.106155

Yang, S.; Yang, X.; Mo, J. (2018): The application of unmanned aircraft systems to plant protection in China. Precision Agriculture 19, pp. 278–292, https://doi.org/10.1007/s11119-017-9516-7

Zhang, C.; Kovacs, J. M. (2012): The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture 13, pp. 693–712, https://doi.org/10.1007/s11119-012-9274-5

Zheng, S.; Wang, Z.; Wachenheim, C. J. (2019): Technology adoption among farmers in Jilin Province, China: The case of aerial pesticide application. China Agricultural Economic Review 11, pp. 206–216, https://doi.org/10.1108/CAER-11-2017-0216

Zuo, A.; Wheeler, S. A.; Sun, H. (2021): Flying over the farm: understanding drone adoption by Australian irrigators. Precision Agriculture, https://doi.org/10.1007/s11119-021-09821-y

Downloads

Veröffentlicht

02.09.2024

Zitationsvorschlag

Quan, X., Wang, Z., Daum, T., He, X., & Doluschitz, R. (2024). Die Determinanten der Einführung von unbemannten Luftfahrzeugen (UAV) und der Status quo des UAV-gestützten Mustermanagements in der chinesischen Landwirtschaft: Erkenntnisse aus Experteninterviews. Agricultural engineering.Eu, 79(3). https://doi.org/10.15150/ae.2024.3318

Ausgabe

Rubrik

Fachartikel

Am häufigsten gelesenen Artikel dieser/dieses Autor/in