Akzeptanz und Nutzung von Navigationssoftware durch landwirtschaftliche Lohnunternehmen – Eine Anwendung des Technologieakzeptanzmodells

Autor/innen

  • Marius Michels
  • Paul Johann Weller von Ahlefeld
  • Oliver Mußhoff

DOI:

https://doi.org/10.15150/lt.2019.3210

Schlagworte:

Landwirtschaftliche Lohnunternehmen, Navigationssoftware, Partial Least Squares Strukturgleichungsmodell, Technologieakzeptanzmodell, What3Words

Abstract

Bisher ist wenig über den Einsatz von Navigationssoftware durch landwirtschaftliche Lohnunternehmen bekannt. Daher wurde, basierend auf einer Online-Umfrage bei 134 deutschen Lohnunternehmen, das Technologieakzeptanzmodell (TAM) erstmals auf die Nutzung von Navigationssoftware angewendet. Das TAM wurde anhand der Software What3Words und mittels Partial Least Squares Strukturgleichungsmodellierung geschätzt. Weiterhin wurden Erkenntnisse über die Zufriedenheit der Lohnunternehmen mit dem Softwareangebot gesammelt. Die Lohnunternehmen zeigen sich nur teilweise zufrieden und wünschen sich, Informationen über Brückenhöhen oder Gewichtsbeschränkungen abrufen zu können. Der Beitrag ist sowohl für Lohnunternehmen als auch für Entwickler von Navigationssoftware interessant. Der Beitrag ist außerdem für Forscher in anderen Teilgebieten der Logistik relevant.

Literaturhinweise

Amiama, C.; Pereira, J.M.; Castro, A.l; Bueno, J. (2015): Modelling corn silage harvest logistics for a cost optimization approach. Computers and Electronics in Agriculture 118, pp. 56–65; https://doi.org/10.1016/j.compag.2015.08.024

Amponsah, W.A. (1995): Computer adoption and use of information services by North Carolina commercial farmers. Journal of Agricultural and Applied Economics 27 (2), pp. 565–576; https://doi.org/10.1017/S1074070800028595

Aubert, B.A.; Schroeder, A.; Grimaudo, J. (2012): IT as enabler of sustainable farming. An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decision Support Systems 54 (1), pp. 510–520; https://doi.org/10.1016/j.dss.2012.07.002

Austin, E. J.; Willock, J.; Deary, I. J.; Gibson, G. J.; Dent, J. B.; Edwards-Jones, G.; Morgan, O.; Grieve, R.; Sutherland A. (1998): Empirical models of farmer behaviour using psychological, social and economic variables. Part I. Linear modelling. Agricultural Systems 58 (2), pp. 203–224; https://doi.org/10.1016/S0308-521X(98)00066-3

Bernhardt, H.; Mederle, M.; Treiber, M.; Wörz, S. (2018): Aspects of digization in agricultural logistics in Germany. Scientific Papers. Series E. Land Reclamation, Earth Observation & Surveying, Environmental Engineering (7), pp. 215–220; http://landreclamationjournal.usamv.ro/pdf/2018/Art38.pdf

BMVI (2018): Das Navigationssystem für die Landwirtschaft - AgriNAVI. Bundesministerium für Transport und Infrastruktur, https://www.bmvi.de/SharedDocs/DE/Artikel/DG/mfund-projekte/navigationsysstem-fuer-landwirtschaft-agrinavi.html, accessed on 8 December 2018

Bonke, V.; Fecke, W.; Michels, M.; Musshoff, O. (2018): Willingness to pay for smartphone apps facilitating sustainable crop protection. Agronomy for Sustainable Development 38 (51), pp. 1-10; https://doi.org/10.1007/s13593-018-0532-4

Davis, F. D. (1989): Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, pp. 319–340; https://www.jstor.org/stable/249008

Daberkow, S.G.; McBride, W.D. (2003): Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US. Precision Agriculture 4 (2), pp. 163–177; https://doi.org/10.1023/A:1024557205871

DBV (2018): Situationsbericht 2017/18. Deutscher Bauernverband, https://media.repro-mayr.de/00/709600.pdf, accessed on 8 December 2018

Ebadian, M.; Sowlati, T.; Sokhansanj, S.; Stumborg, M.; Townley-Smith, L. (2011): A new simulation model for multi-agricultural biomass logistics system in bioenergy production. Biosystems Engineering 110 (3), pp. 280–290; https://doi.org/10.1016/j.biosystemseng.2011.08.008

Fecke, W.; Michels, M.; von Hobe, C.-F.; Mußhoff, O. (2018): Wie kommunizieren Landwirte in Zeiten der Digitalisierung? Berichte über Landwirtschaft-Zeitschrift für Agrarpolitik und Landwirtschaft 96 (2); http://dx.doi.org/10.12767/buel.v96i2.194

Fishbein, M.; Ajzen, I. (1975): Belief, attitude, intention and behavior. An introduction to theory and research. Reading, MA: Addison-Wesley

Fountas, S.; Blackmore, S.; Ess, D.; Hawkins, S.; Blumhoff, G.; Lowenberg-Deboer, J.; Sorensen, C. G. (2005): Farmer experience with precision agriculture in Denmark and the US Eastern Corn Belt. Precision Agriculture 6 (2), pp. 121–141; https://doi.org/10.1007/s11119-004-1030-z

Gaese, C. F.; Bernhardt, H.; Popp, L.; Wörz, S.; Heizinger, V.; Damme, T.; Eberhardt, J.; Kluge, A. (2013): Entwicklung eines Planungssystems zur Optimierung von Agrarlogistik-Prozessen. In: Clasen, M.; Kersebaum, K. C.; Meyer-Aurich, A; Theuvsen, B. (Eds.), Massendatenmanagement in der Agrar- und Ernährungswirtschaft – Erhebung – Verarbeitung – Nutzung. Bonn: Gesellschaft für Informatik e.V., pp. 91–94; https://subs.emis.de/LNI/Proceedings/Proceedings211/91.pdf

Ghadim, A.K.A.; Pannell, D.J. (1999): A conceptual framework of adoption of an agricultural innovation. Agricultural economics 21 (2), pp. 145–154; https://doi.org/10.1016/S0169-5150(99)00023-7

Götz, S.; Holzer, J.; Winkler, J.; Bernhardt, H.; Engelhardt, D. (2011): Agrarlogistik-Systemvergleich von Transportkonzepten der Getreidelogistik. LANDTECHNIK–Agricultural Engineering 66 (5), pp. 381–386; http://dx.doi.org/10.15150/lt.2011.898

Götz, S.; Zimmermann, N.; Engelhardt, D.; Bernhardt, H. (2014): Influencing factors on agricultural transports and their effect on energy consumption and average speed. Agricultural Engineering International: CIGR Journal, pp. 59–69

Hair, J. F.; Hult, G. T. M.; Ringle, C.; Sarstedt, M. (2016): A primer on partial least squares structural equation modeling (PLS-SEM). Thousand Oaks: Sage Publications

Heizinger, V.; Bernhardt, H. (2011): Algorithmic Efficiency Analysis of Harvest and Transport of Biomass. Journal of Agricultural Machinery Science 7 (1), pp. 95–99; http://www.tarmakder.org.tr/images/stories/MAKALELER/2011/2011_vol7(1)/2011_vol7(1)_95-99.pdf

Heizinger, V.; Mederle, M.; Huber, S.; Bernhardt, H. (2016): Abschätzung des Kraftstoff-Einsparpotentials in der Infield-Logistik bei der Ernte von Biomasse. In: Ruckelshausen, A.; Meyer-Aurich, A.; Rath, T.; Recke, G; Theuvsen, B. (Eds.), Informatik in der Land-, Forst- und Ernährungswirtschaft 2016. Bonn: Gesellschaft für Informatik e.V., S. 65-68; https://dl.gi.de/handle/20.500.12116/769

Jiang, W.; Stefanakis, E. (2018): What3Words Geocoding Extensions. Journal of Geovisualization and Spatial Analysis 2 (1), pp. 1-18; https://doi.org/10.1007/s41651-018-0014-x

Kumar, S.; C. Zahn (2003): Mobile communications: evolution and impact on business operations. In: Technovation 23 (6), pp. 515–520; https://doi.org/10.1016/S0166-4972(02)00120-7

Kutter, T.; Tiemann, S.; Siebert, R.; Fountas, S. (2011): The role of communication and co-operation in the adoption of precision farming. Precision Agriculture 12 (1), pp. 2–17; https://doi.org/10.1007/s11119-009-9150-0

Lamsal, K.; Jones, P. C.; Thomas, B. W. (2016): Harvest logistics in agricultural systems with multiple, independent producers and no on-farm storage. Computers & Industrial Engineering 91, pp. 129–138; https://doi.org/10.1016/j.cie.2015.10.018

Lauer, J.; Zipf, A. (2010): A workflow for improving the availability of routable data (OSM) for lo-gistics in agriculture-using data from Telematics-systems and community-based quality management, http://koenigstuhl.geog.uni-heidelberg.de/publications/2010/Lauer/lauer-zipf-agro-logistics-agile2010.pdf, accessed on 8 December 2018

Maranguni, N.; Grani, A. (2015): Technology acceptance model: a literature review from 1986 to 2013. Universal Access in the Information Society 14 (1), pp. 81-95; http://dx.doi.org/10.1007/s10209-014-0348-1

Mederle, M.; Heizinger, V.; Bernhardt, H. (2015): Analyse von Einflussfaktoren auf Befahrungsstrategien im Feld. In: Ruckelshausen, A.; Schwarz, H.-P.; Theuvsen, B. (Eds.), Informatik in der Land-, Forst- und Ernährungswirtschaft 2015. Bonn: Gesellschaft für Informatik e.V., pp. 113–116; https://dl.gi.de/handle/20.500.12116/2597

Mzoughi, N. (2011): Farmers adoption of integrated crop protection and organic farming. Do moral and social concerns matter? Ecological Economics 70 (8), pp. 1536–1545; https://doi.org/10.1016/j.ecolecon.2011.03.016

Nelson, R.R.; Phelps, E.S. (1966): Investment in humans, technological diffusion, and economic growth. The American Economic Review 56, pp. 69–75

Perdana, Y. R. (2012): Logistics information system for supply chain of agricultural commodity. Procedia-Social and Behavioral Sciences 65, pp. 608–613; https://doi.org/10.1016/j.sbspro.2012.11.172

Reichardt, M.; Jürgens, C.; Klöble, U.; Hüter, J.; Moser, K. (2009): Dissemination of precision farming in Germany. Acceptance, adoption, obstacles, knowledge transfer and training activities. Precision Agriculture 10 (6), pp. 525-545; https://doi.org/10.1007/s11119-009-9112-6

Ringle, C. M.; Wende, S.; Becker, J.-M. (2015): SmartPLS 3. Boenningstedt. SmartPLS GmbH

Rose, D.C.; Sutherland, W.J.; Parker, C.;Lobley, M.;Winter, M.; Morris, C.; Twining, S.;Foulkes, C.; Amano, T.; Dicks, L.V.; (2016): Decision support tools for agriculture: Towards effective design and delivery. Agricultural Systems 149, pp. 165–174; https://doi.org/10.1016/j.agsy.2016.09.009

Schaak, H.; Mußhoff, O. (2018): Understanding the adoption of grazing practices in German dairy farming. Agricultural Systems 165, pp. 230–239; https://doi.org/10.1016/j.agsy.2018.06.015

Springael, J.; Paternoster, A.; Braet, Jo. (2018): Reducing postharvest losses of apples. Optimal transport routing (while minimizing total costs). Computers and Electronics in Agriculture 146, pp. 136–144; https://doi.org/10.1016/j.compag.2018.02.007

Vanclay, F.; Lawrence, G. (1994): Farmer rationality and the adoption of environmentally sound practices; a critique of the assumptions of traditional agricultural extension. European Journal of Agricultural Education and Extension 1 (1), pp. 59–90; https://doi.org/10.1080/13892249485300061

Venkatesh, V.; Bala, H. (2008): Technology acceptance model 3 and a research agenda on interventions. Decision Sciences 39 (2), pp. 273–315; https://doi.org/10.1111/j.1540-5915.2008.00192.x

Venkatesh, V.; Davis, F. D. (2000): A theoretical extension of the technology acceptance model. Four longitudinal field studies. Management Science 46 (2), pp. 186–204; https://doi.org/10.1287/mnsc.46.2.186.11926

Venkatesh V.; Morris, M. G.; Davis, G. B.; Davis, F. D. (2003): User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly 27 (3), pp. 425–478; https://www.jstor.org/stable/30036540?seq=1#metadata_info_tab_contents

Verma, P.; Sinha, N. (2018): Integrating perceived economic wellbeing to technology acceptance model. The case of mobile based agricultural extension service. Technological Forecasting and Social Change 126, pp. 207–216; https://doi.org/10.1016/j.techfore.2017.08.013

What3Words (2018): Weltweites Adresssystem, https://what3words.com/de/, accessed on 7 December 2018

Veröffentlicht

2019-08-16

Zitationsvorschlag

Michels, M., Weller von Ahlefeld, P. J., & Mußhoff, O. (2019). Akzeptanz und Nutzung von Navigationssoftware durch landwirtschaftliche Lohnunternehmen – Eine Anwendung des Technologieakzeptanzmodells. Agricultural-engineering.Eu, 74(4). https://doi.org/10.15150/lt.2019.3210

Ausgabe

Rubrik

Fachartikel