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Two-dimensional Crop Flow Separation 
Model for Rotor Units of Combine 
Harvesters
Marvin Barther

Today, one-dimensional separation model approaches have been used successfully to esti-
mate the separation efficiency for straw walkers and sieve-based cleaning units. In contrast 
to straw walkers, estimating the separation efficiency of rotor units with sensors is challeng-
ing, because straw and grain are transported along helical trajectories and sensors can only 
measure a small fraction of the separated grain. This study introduces a novel two-dimension-
al crop flow separation model based on Böttinger’s separation model and Wacker’s crop flow 
model for rotor units. Utilizing a large grid aligned sensor network of structure-borne noise 
sensors within the combine harvester’s rotor unit, the two-dimensional separation model ap-
proach fits well on grain masses within single rotor segments. It can be applied straightfor-
wardly to different rotor unit designs and sensor positions.
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Combine harvesters have a separation unit and a cleaning unit for grain harvesting. The most common 
approaches for separation units utilize either straw walkers or a rotor unit. The separation efficiency, 
defined as the amount of grain separated from material other than grain (MOG), is a crucial metric for 
separation units of combine harvesters (Miu 2015). Commonly, structure-borne noise sensors have 
been used for grain counting, especially piezoelectric and acoustic sensors (Meyer zu Hoberge and 
Hilleringmann 2011, Penner et al. 2024).

First approaches towards grain loss predictions based on sensor data used exponential functions 
to describe the decaying behavior of grain separation along the separation length (Beck 1999, Bjork 
1991, Böttinger 1993, Nath et al. 1982). Soon after, the exponential models and the sensor systems 
were further developed, and the models were fitted on multiple sensors installed under the separation 
unit (Liu 1990, Liu and Leonard 1993). Additionally, multidimensional models have been designed to 
include the separation width (Bjork 1991).

For machine automation, especially with machine learning, it became more common to include 
the raw grain loss sensor signal into the combine optimization algorithms directly or to design virtual 
grain loss monitors based on combine settings alone (Bomoi et al. 2023, Gundoshmian et al. 2020, 
Hermann et al. 2016). Additionally, different machine learning algorithms have been evaluated to 
predict separation efficiency based on a grid-aligned sensor network and machine settings (Penner 
et al. 2024).
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In this study, a novel two-dimensional crop flow separation model is introduced and analyzed. It 
combines Böttinger’s approach of exponential decay of separation processes (Böttinger 1993) with 
the helical transport trajectories described by Wacker (Wacker 1985).

Approaches by Böttinger and Wacker
Wessel (1968) defined different process steps of the grain in separation processes of sieves, which 
are shown in Figure 1. The first process step is the segregation between grain and MOG, where grain 
accumulates towards the sieve, followed by the statistical selection. The grain is finally separated by 
passing the sieve openings.

Based on the differentiation between segregation and selection, Böttinger (1993) assumed an 
exponential behavior for both processes, resulting in an inhomogeneous differential equation. A ho-
mogeneous grain distribution within the material was assumed as the initial condition. Let A be 
the coefficient of the segregation process and B that of the selection process, respectively, and let 
D be a polynomial coefficient. The residual grain functions 
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of not yet separated grain at separation length s for each process, and the residual grain function  
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The separation function 
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Figure 1: Three parallel process steps for grain according to Wessel (1968): segregation between grain and MOG, 
selection of grain at the sieves, and separation of grain
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Wacker (1985) described the material trajectory movement inside the rotor unit. The rotor casing 
can be split into a rotor concave area and a roof panel area, which differ in separation process acti-
vation and rearward material thrust. The rotor concave area has sieves and grain can be separated. 
Typically, the concave area constitutes the lower half of the rotor casing, separating the grain directly 
onto the return pan underneath the rotor unit. Due to the rotor movement, the material movement is 
forced to be nearly orthogonal to the combine’s length. The roof panel area is closed. The grain can 
be segregated, but there is no separation. The material gets its rearward thrust by the guide plates 
in the roof panel area. In Figure 2, the cylindrical rotor casing has been unwrapped into a plane with 
length 𝑥 and rotor circumference (plane width) 𝑦. Finally, the material is transported in the axial 
direction through the rotor unit, following a helical trajectory. With each circulation, it is alternately 
transported through both the concave and roof panel area. Figure 2 illustrates an exemplary crop flow 
with four circulations.

Two-dimensional Crop Flow Separation Model Design
Following the material flow shown in Figure 2, the rotor areas change. Due to the ongoing segregation 
process in all areas, the homogeneous distribution of grain in the material at the beginning of a rotor 
concave area can no longer be used as an initial condition. In this study, grain distribution values 

𝛼𝛼� ∈ [0,1] and 𝛼𝛼� ∈ [0,1] with 𝛼𝛼� + 𝛼𝛼� = 1   are introduced as start values at s0 or both processes, respec-
tively. The residual grain function including the starting value of the segregation process ŘA(s) can 
be adapted from equation 1: 
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The starting value for the residual grain function of the selection process ŘA(s) must be included 
in the solution of Böttinger’s inhomogeneous differential equation (Böttinger 1993): 
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Figure 2: Opened rotor casing defined by Wacker (1985) as a plane with rotor length 𝑥 and rotor circumference 𝑦 
(For a better overview, the start of the rotor circumference is at the very beginning of the concave area. Beyond the 
end of the roof panel area, the rotor circumference extends into the concave area. The red line indicates an exem-
plary crop flow. Due to the periodical rotor circumference, it is alternately transported through the concave and roof 
panel areas. In this rotor unit, the material undergoes four complete circulations. The material is fed across the rotor 
circumference, with its trajectories running parallel to the illustrated crop flow example.)
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Finally, the residual functions ŘB(s) and ŘA(s), as well as the separation function Ž(s) can be cal-
culated the same way as ŘB(s) , ŘA(s) , and Ž(s) (equations 2 to 4): 
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While Ž(s) (equation 4) always starts at Ž(s0) and reaches a maximum, Ž(s) (equation 9) can be a 
single exponential function, strictly monotonically decreasing, with αA = 0.

In Figure 3(a) the activation and deactivation of both the segregation and the selection process are 
shown along the separation length. By integrating over the separation length s, there are two different 
process lengths for segregation and selection, which are shown in Figure 3(b).

While the segregation length increases linearly, the selection length increases the same way only 
in rotor concave areas. The selection length remains constant in the roof panel areas. In contrast to 
the activation function of the selection in Figure 3(a), the selection length function is continuous. This 
motivates a crop flow separation model approach of a continuous function of sums of single separa-
tion functions over all areas. In each area, the specific continuous length functions for segregation 
and selection are considered.

With given coordinates 𝑥 and 𝑦 for the rotor casing length and width, respectively (Figure 2), the 
material path can be described as an order of different areas with specific selection lengths and se-
lection activations. Let 𝑝𝑖 be the upper boundary of area 𝑖 with 𝑝𝑖 < 𝑝𝑖 + 1 and 𝑝0 = 0. Let a𝑖 ∈ {0,1} be 
the selection activation of area 𝑖. Let 𝑛 be the corresponding area of separation length s. The selection 
length sB is the sum of all active segments of the area:

Figure 3: Activation functions of the processes segregation and selection with 1 for activation and 0 for deactivation 
in (a) and their integrated process lengths in (b) based on the crop flow of Figure 2.
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With the residual separation length function 𝑞�𝑖�, the separation length from area 𝑖 to 𝑠𝑠 (with index 
𝑘 denoting rotor panel area with respective bounds 𝑝��� and 𝑝�  and selection activation 𝑎𝑎�) can be 
calculated as followed: 
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While the residual grain function of the segregation process 𝑅𝑅��𝑠𝑠� is the same as 𝑅𝑅���𝑠𝑠� (equation 5), 
the integral of equation 6 must be solved separately for each area 𝑖 for 𝑅𝑅��𝑠𝑠�. The area 𝑖 is integrated 
only over its length from zero to 𝑝� � 𝑝���. For both the segregation process and the selection process, 
the already processed length must be considered. While the segregation is continuous, for the 
selection process the activation 𝑎𝑎� must be considered with its already processed length 𝑠𝑠� � 𝑞�𝑖�. All 
in all, the residual grain function of the selection 𝑅𝑅��𝑠𝑠� must be calculated in the following way: 
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The residual grain function R�,��𝑠𝑠� is the single residual grain function of the selection for area 𝑖. With 
𝑝� � min�𝑝� , 𝑠𝑠�, its integral (analog to formula 6) must be solved as follows: 

 𝑅𝑅�,��𝑠𝑠� � � 𝛼𝛼�𝐴𝐴�𝑥 � 𝑝�����𝑒𝑒� �
��������������

∙ 𝑒𝑒
�

�������������������
 d𝑥

�������

�
 (Eq. 13) 

In general, the integral in formula 13 has no analytical antiderivative for arbitrary polynomial factors 
𝐷𝐷. The calculation of the two-dimensional crop flow separation model will be continued with 𝐷𝐷 𝐷 0 
based on Böttinger’s approach with the assumption 𝐴𝐴 � 𝐵𝐵: 
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The residual grain function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are calculated the same way as 𝑅𝑅��𝑠𝑠� 
and 𝑍𝑍��𝑠𝑠� (equations 3 and 4), respectively: 
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With the residual separation length function q(𝑖), the separation length from area 𝑖 to s (with index 
𝑘 denoting rotor panel area with respective bounds 𝑝𝑘–1 and 𝑝𝑘 and selection activation a𝑘) can be 
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With the residual separation length function 𝑞�𝑖�, the separation length from area 𝑖 to 𝑠𝑠 (with index 
𝑘 denoting rotor panel area with respective bounds 𝑝��� and 𝑝�  and selection activation 𝑎𝑎�) can be 
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While the residual grain function of the segregation process 𝑅𝑅��𝑠𝑠� is the same as 𝑅𝑅���𝑠𝑠� (equation 5), 
the integral of equation 6 must be solved separately for each area 𝑖 for 𝑅𝑅��𝑠𝑠�. The area 𝑖 is integrated 
only over its length from zero to 𝑝� � 𝑝���. For both the segregation process and the selection process, 
the already processed length must be considered. While the segregation is continuous, for the 
selection process the activation 𝑎𝑎� must be considered with its already processed length 𝑠𝑠� � 𝑞�𝑖�. All 
in all, the residual grain function of the selection 𝑅𝑅��𝑠𝑠� must be calculated in the following way: 
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The residual grain function R�,��𝑠𝑠� is the single residual grain function of the selection for area 𝑖. With 
𝑝� � min�𝑝� , 𝑠𝑠�, its integral (analog to formula 6) must be solved as follows: 
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In general, the integral in formula 13 has no analytical antiderivative for arbitrary polynomial factors 
𝐷𝐷. The calculation of the two-dimensional crop flow separation model will be continued with 𝐷𝐷 𝐷 0 
based on Böttinger’s approach with the assumption 𝐴𝐴 � 𝐵𝐵: 
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The residual grain function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are calculated the same way as 𝑅𝑅��𝑠𝑠� 
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While the residual grain function of the segregation process RA(s) is the same as ŘA(s) (equation 5), 
the integral of equation 6 must be solved separately for each area 𝑖 for RB (s). The area 𝑖 is integrated 
only over its length from zero to 𝑝𝑖–𝑝𝑖–1. For both the segregation process and the selection process, 
the already processed length must be considered. While the segregation is continuous, for the selec-
tion process the activation a𝑖 must be considered with its already processed length sB–q(𝑖). All in all, 
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With the residual separation length function 𝑞�𝑖�, the separation length from area 𝑖 to 𝑠𝑠 (with index 
𝑘 denoting rotor panel area with respective bounds 𝑝��� and 𝑝�  and selection activation 𝑎𝑎�) can be 
calculated as followed: 
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While the residual grain function of the segregation process 𝑅𝑅��𝑠𝑠� is the same as 𝑅𝑅���𝑠𝑠� (equation 5), 
the integral of equation 6 must be solved separately for each area 𝑖 for 𝑅𝑅��𝑠𝑠�. The area 𝑖 is integrated 
only over its length from zero to 𝑝� � 𝑝���. For both the segregation process and the selection process, 
the already processed length must be considered. While the segregation is continuous, for the 
selection process the activation 𝑎𝑎� must be considered with its already processed length 𝑠𝑠� � 𝑞�𝑖�. All 
in all, the residual grain function of the selection 𝑅𝑅��𝑠𝑠� must be calculated in the following way: 
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The residual grain function R�,��𝑠𝑠� is the single residual grain function of the selection for area 𝑖. With 
𝑝� � min�𝑝� , 𝑠𝑠�, its integral (analog to formula 6) must be solved as follows: 
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In general, the integral in formula 13 has no analytical antiderivative for arbitrary polynomial factors 
𝐷𝐷. The calculation of the two-dimensional crop flow separation model will be continued with 𝐷𝐷 𝐷 0 
based on Böttinger’s approach with the assumption 𝐴𝐴 � 𝐵𝐵: 
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The residual grain function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are calculated the same way as 𝑅𝑅��𝑠𝑠� 
and 𝑍𝑍��𝑠𝑠� (equations 3 and 4), respectively: 
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The residual grain function RB,𝑖(s) is the single residual grain function of the selection for area 𝑖. With 
𝑝s = min(p𝑖,s), its integral (analog to formula 6) must be solved as follows:
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With the residual separation length function 𝑞�𝑖�, the separation length from area 𝑖 to 𝑠𝑠 (with index 
𝑘 denoting rotor panel area with respective bounds 𝑝��� and 𝑝�  and selection activation 𝑎𝑎�) can be 
calculated as followed: 
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While the residual grain function of the segregation process 𝑅𝑅��𝑠𝑠� is the same as 𝑅𝑅���𝑠𝑠� (equation 5), 
the integral of equation 6 must be solved separately for each area 𝑖 for 𝑅𝑅��𝑠𝑠�. The area 𝑖 is integrated 
only over its length from zero to 𝑝� � 𝑝���. For both the segregation process and the selection process, 
the already processed length must be considered. While the segregation is continuous, for the 
selection process the activation 𝑎𝑎� must be considered with its already processed length 𝑠𝑠� � 𝑞�𝑖�. All 
in all, the residual grain function of the selection 𝑅𝑅��𝑠𝑠� must be calculated in the following way: 
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The residual grain function R�,��𝑠𝑠� is the single residual grain function of the selection for area 𝑖. With 
𝑝� � min�𝑝� , 𝑠𝑠�, its integral (analog to formula 6) must be solved as follows: 
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In general, the integral in formula 13 has no analytical antiderivative for arbitrary polynomial factors 
𝐷𝐷. The calculation of the two-dimensional crop flow separation model will be continued with 𝐷𝐷 𝐷 0 
based on Böttinger’s approach with the assumption 𝐴𝐴 � 𝐵𝐵: 
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The residual grain function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are calculated the same way as 𝑅𝑅��𝑠𝑠� 
and 𝑍𝑍��𝑠𝑠� (equations 3 and 4), respectively: 
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In general, the integral in formula 13 has no analytical antiderivative for arbitrary polynomial  
factors D. The calculation of the two-dimensional crop flow separation model will be continued with 
D = 0 based on Böttinger’s approach with the assumption A ≠ B:
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With the residual separation length function 𝑞�𝑖�, the separation length from area 𝑖 to 𝑠𝑠 (with index 
𝑘 denoting rotor panel area with respective bounds 𝑝��� and 𝑝�  and selection activation 𝑎𝑎�) can be 
calculated as followed: 
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While the residual grain function of the segregation process 𝑅𝑅��𝑠𝑠� is the same as 𝑅𝑅���𝑠𝑠� (equation 5), 
the integral of equation 6 must be solved separately for each area 𝑖 for 𝑅𝑅��𝑠𝑠�. The area 𝑖 is integrated 
only over its length from zero to 𝑝� � 𝑝���. For both the segregation process and the selection process, 
the already processed length must be considered. While the segregation is continuous, for the 
selection process the activation 𝑎𝑎� must be considered with its already processed length 𝑠𝑠� � 𝑞�𝑖�. All 
in all, the residual grain function of the selection 𝑅𝑅��𝑠𝑠� must be calculated in the following way: 
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The residual grain function R�,��𝑠𝑠� is the single residual grain function of the selection for area 𝑖. With 
𝑝� � min�𝑝� , 𝑠𝑠�, its integral (analog to formula 6) must be solved as follows: 
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In general, the integral in formula 13 has no analytical antiderivative for arbitrary polynomial factors 
𝐷𝐷. The calculation of the two-dimensional crop flow separation model will be continued with 𝐷𝐷 𝐷 0 
based on Böttinger’s approach with the assumption 𝐴𝐴 � 𝐵𝐵: 

 𝑅𝑅�,��𝑠𝑠� � � 𝛼𝛼�𝐴𝐴𝑒𝑒���������� ∙ 𝑒𝑒�������������� d𝑥
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The residual grain function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are calculated the same way as 𝑅𝑅��𝑠𝑠� 
and 𝑍𝑍��𝑠𝑠� (equations 3 and 4), respectively: 
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With the residual separation length function 𝑞�𝑖�, the separation length from area 𝑖 to 𝑠𝑠 (with index 
𝑘 denoting rotor panel area with respective bounds 𝑝��� and 𝑝�  and selection activation 𝑎𝑎�) can be 
calculated as followed: 
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While the residual grain function of the segregation process 𝑅𝑅��𝑠𝑠� is the same as 𝑅𝑅���𝑠𝑠� (equation 5), 
the integral of equation 6 must be solved separately for each area 𝑖 for 𝑅𝑅��𝑠𝑠�. The area 𝑖 is integrated 
only over its length from zero to 𝑝� � 𝑝���. For both the segregation process and the selection process, 
the already processed length must be considered. While the segregation is continuous, for the 
selection process the activation 𝑎𝑎� must be considered with its already processed length 𝑠𝑠� � 𝑞�𝑖�. All 
in all, the residual grain function of the selection 𝑅𝑅��𝑠𝑠� must be calculated in the following way: 

 𝑅𝑅��𝑠𝑠� � 𝛼𝛼�𝑒𝑒� �
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 (Eq. 12) 

The residual grain function R�,��𝑠𝑠� is the single residual grain function of the selection for area 𝑖. With 
𝑝� � min�𝑝� , 𝑠𝑠�, its integral (analog to formula 6) must be solved as follows: 
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In general, the integral in formula 13 has no analytical antiderivative for arbitrary polynomial factors 
𝐷𝐷. The calculation of the two-dimensional crop flow separation model will be continued with 𝐷𝐷 𝐷 0 
based on Böttinger’s approach with the assumption 𝐴𝐴 � 𝐵𝐵: 
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The residual grain function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are calculated the same way as 𝑅𝑅��𝑠𝑠� 
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The residual grain function R(s) and the separation function Z(s) are calculated the same way as Ř(s) 
and Ž(s) (equations 3 and 4), respectively:

 𝑠𝑠� � �𝑠𝑠 � 𝑝���� ∙ 𝑎𝑎� � ��𝑝� � 𝑝���� ∙ 𝑎𝑎�

���

���

 (Eq. 10) 

With the residual separation length function 𝑞�𝑖�, the separation length from area 𝑖 to 𝑠𝑠 (with index 
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While the residual grain function of the segregation process 𝑅𝑅��𝑠𝑠� is the same as 𝑅𝑅���𝑠𝑠� (equation 5), 
the integral of equation 6 must be solved separately for each area 𝑖 for 𝑅𝑅��𝑠𝑠�. The area 𝑖 is integrated 
only over its length from zero to 𝑝� � 𝑝���. For both the segregation process and the selection process, 
the already processed length must be considered. While the segregation is continuous, for the 
selection process the activation 𝑎𝑎� must be considered with its already processed length 𝑠𝑠� � 𝑞�𝑖�. All 
in all, the residual grain function of the selection 𝑅𝑅��𝑠𝑠� must be calculated in the following way: 

 𝑅𝑅��𝑠𝑠� � 𝛼𝛼�𝑒𝑒� �
�����

���
� 𝑒𝑒� �

�����
���

� 𝑅𝑅�,��𝑠𝑠�
�

���

 (Eq. 12) 

The residual grain function R�,��𝑠𝑠� is the single residual grain function of the selection for area 𝑖. With 
𝑝� � min�𝑝� , 𝑠𝑠�, its integral (analog to formula 6) must be solved as follows: 
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In general, the integral in formula 13 has no analytical antiderivative for arbitrary polynomial factors 
𝐷𝐷. The calculation of the two-dimensional crop flow separation model will be continued with 𝐷𝐷 𝐷 0 
based on Böttinger’s approach with the assumption 𝐴𝐴 � 𝐵𝐵: 
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The residual grain function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are calculated the same way as 𝑅𝑅��𝑠𝑠� 
and 𝑍𝑍��𝑠𝑠� (equations 3 and 4), respectively: 
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(Eq. 17) 

The separation function 𝑍𝑍�𝑠𝑠� in equation 17 can also be written as 𝑍𝑍�𝑠𝑠� � 𝐵𝐵𝑎𝑎� ∙ 𝑅𝑅��𝑠𝑠�. 

 
Continuity and Differentiability 
Both the residual function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are sums of exponential functions. 
Exponential functions are continuously differentiable on the whole domain of ℝ. To check for 
continuity and differentiability, the boundaries between the exponential functions must be 
considered. For the residual function 𝑅𝑅�𝑠𝑠�, the limits of 𝑠𝑠 approaching the boundary point 𝑝� from 
both sides, from area 𝑛 and from area 𝑛 � 1, must be equal: 

 𝑙𝑙𝑖𝑙𝑙
����
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𝑅𝑅�𝑠𝑠� (Eq. 18) 

 

First, it can be easily proven that the limits of 𝑠𝑠� (equation 10) with 𝑠𝑠 � 𝑝� are the same: 
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This proves the equality of the first term 𝛼𝛼�𝑒𝑒����  of equation 16. Using equation 11, it can be shown 
that 𝑞�𝑛 � 1� � 0, while 𝑞�𝑛� � �𝑝� � 𝑝���� ∙ 𝑎𝑎�. Approaching 𝑝� from area 𝑛 � 1, the second and 
last term of equation 16 can be reduced as follows: 
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The separation function Z(s) in equation 17 can also be written as Z(s) = Ba𝑛 · RB(s).

Continuity and Differentiability
Both the residual function R(s) and the separation function Z(s) are sums of exponential functions. 
Exponential functions are continuously differentiable on the whole domain of ℝ . To check for conti-
nuity and differentiability, the boundaries between the exponential functions must be considered. For 
the residual function R(s), the limits of s approaching the boundary point 𝑝𝑛 from both sides, from 
area 𝑛 and from area 𝑛 + 1, must be equal:
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Both the residual function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are sums of exponential functions. 
Exponential functions are continuously differentiable on the whole domain of ℝ. To check for 
continuity and differentiability, the boundaries between the exponential functions must be 
considered. For the residual function 𝑅𝑅�𝑠𝑠�, the limits of 𝑠𝑠 approaching the boundary point 𝑝� from 
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𝐵𝐵𝑎𝑎� � 𝐴𝐴
 

(Eq. 17) 

The separation function 𝑍𝑍�𝑠𝑠� in equation 17 can also be written as 𝑍𝑍�𝑠𝑠� � 𝐵𝐵𝑎𝑎� ∙ 𝑅𝑅��𝑠𝑠�. 

 
Continuity and Differentiability 
Both the residual function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are sums of exponential functions. 
Exponential functions are continuously differentiable on the whole domain of ℝ. To check for 
continuity and differentiability, the boundaries between the exponential functions must be 
considered. For the residual function 𝑅𝑅�𝑠𝑠�, the limits of 𝑠𝑠 approaching the boundary point 𝑝� from 
both sides, from area 𝑛 and from area 𝑛 � 1, must be equal: 

 𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� �  𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� (Eq. 18) 

 

First, it can be easily proven that the limits of 𝑠𝑠� (equation 10) with 𝑠𝑠 � 𝑝� are the same: 

 𝑙𝑙𝑖𝑙𝑙
����

𝑠𝑠� � � ��𝑝� � 𝑝���� ∙ 𝑎𝑎��
�������

���

� �𝑝� � 𝑝�� ∙ 𝑎𝑎��� (Eq. 19) 

 � ���𝑝� � 𝑝���� ∙ 𝑎𝑎��
�

���

 (Eq. 20) 

 � ���𝑝� � 𝑝���� ∙ 𝑎𝑎��
���

���

� �𝑝� � 𝑝���� ∙ 𝑎𝑎� � 𝑙𝑙𝑖𝑙𝑙
����

𝑠𝑠� (Eq. 21) 

This proves the equality of the first term 𝛼𝛼�𝑒𝑒����  of equation 16. Using equation 11, it can be shown 
that 𝑞�𝑛 � 1� � 0, while 𝑞�𝑛� � �𝑝� � 𝑝���� ∙ 𝑎𝑎�. Approaching 𝑝� from area 𝑛 � 1, the second and 
last term of equation 16 can be reduced as follows: 

 𝑙𝑙𝑖𝑙𝑙
����

𝛼𝛼� �
𝐵𝐵𝑎𝑎���

𝐵𝐵𝑎𝑎��� � 𝐴𝐴
𝑒𝑒��� �

𝐴𝐴𝑒𝑒����𝑒𝑒��������

𝐵𝐵𝑎𝑎��� � 𝐴𝐴
� � 𝛼𝛼�𝑒𝑒���� (Eq. 22) 

Finally, 𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� can be written in the following way: 

 𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� � 𝛼𝛼�𝑒𝑒���� � 𝛼𝛼�𝑒𝑒����  

 � 𝛼𝛼�𝐴𝐴 � �
𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
�𝑒𝑒���������������� � 1��

�

���

 (Eq. 23) 

 

(Eq. 20)

 
�𝛼𝛼�𝐴𝐴𝐵𝐵𝑎𝑎� � �

𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
�𝑒𝑒���������������� � 1��

���

���

� 𝛼𝛼�𝐴𝐴𝐵𝐵𝑎𝑎�
𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
 

(Eq. 17) 

The separation function 𝑍𝑍�𝑠𝑠� in equation 17 can also be written as 𝑍𝑍�𝑠𝑠� � 𝐵𝐵𝑎𝑎� ∙ 𝑅𝑅��𝑠𝑠�. 

 
Continuity and Differentiability 
Both the residual function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are sums of exponential functions. 
Exponential functions are continuously differentiable on the whole domain of ℝ. To check for 
continuity and differentiability, the boundaries between the exponential functions must be 
considered. For the residual function 𝑅𝑅�𝑠𝑠�, the limits of 𝑠𝑠 approaching the boundary point 𝑝� from 
both sides, from area 𝑛 and from area 𝑛 � 1, must be equal: 

 𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� �  𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� (Eq. 18) 

 

First, it can be easily proven that the limits of 𝑠𝑠� (equation 10) with 𝑠𝑠 � 𝑝� are the same: 

 𝑙𝑙𝑖𝑙𝑙
����

𝑠𝑠� � � ��𝑝� � 𝑝���� ∙ 𝑎𝑎��
�������

���

� �𝑝� � 𝑝�� ∙ 𝑎𝑎��� (Eq. 19) 

 � ���𝑝� � 𝑝���� ∙ 𝑎𝑎��
�

���

 (Eq. 20) 

 � ���𝑝� � 𝑝���� ∙ 𝑎𝑎��
���

���

� �𝑝� � 𝑝���� ∙ 𝑎𝑎� � 𝑙𝑙𝑖𝑙𝑙
����

𝑠𝑠� (Eq. 21) 

This proves the equality of the first term 𝛼𝛼�𝑒𝑒����  of equation 16. Using equation 11, it can be shown 
that 𝑞�𝑛 � 1� � 0, while 𝑞�𝑛� � �𝑝� � 𝑝���� ∙ 𝑎𝑎�. Approaching 𝑝� from area 𝑛 � 1, the second and 
last term of equation 16 can be reduced as follows: 

 𝑙𝑙𝑖𝑙𝑙
����

𝛼𝛼� �
𝐵𝐵𝑎𝑎���

𝐵𝐵𝑎𝑎��� � 𝐴𝐴
𝑒𝑒��� �

𝐴𝐴𝑒𝑒����𝑒𝑒��������

𝐵𝐵𝑎𝑎��� � 𝐴𝐴
� � 𝛼𝛼�𝑒𝑒���� (Eq. 22) 

Finally, 𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� can be written in the following way: 

 𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� � 𝛼𝛼�𝑒𝑒���� � 𝛼𝛼�𝑒𝑒����  

 � 𝛼𝛼�𝐴𝐴 � �
𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
�𝑒𝑒���������������� � 1��

�

���

 (Eq. 23) 

 

(Eq. 21)

This proves the equality of the first term αBe –BsB of equation 16. Using equation 11, it can be shown 
that 𝑞(𝑛 + 1) = 0, while 𝑞(𝑛) = (𝑝𝑛 – 𝑝𝑛–1) · a𝑛. Approaching 𝑝𝑛 from area 𝑛 + 1, the second and last 
term of equation 16 can be reduced as follows:

 
�𝛼𝛼�𝐴𝐴𝐵𝐵𝑎𝑎� � �

𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
�𝑒𝑒���������������� � 1��

���

���

� 𝛼𝛼�𝐴𝐴𝐵𝐵𝑎𝑎�
𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
 

(Eq. 17) 

The separation function 𝑍𝑍�𝑠𝑠� in equation 17 can also be written as 𝑍𝑍�𝑠𝑠� � 𝐵𝐵𝑎𝑎� ∙ 𝑅𝑅��𝑠𝑠�. 

 
Continuity and Differentiability 
Both the residual function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are sums of exponential functions. 
Exponential functions are continuously differentiable on the whole domain of ℝ. To check for 
continuity and differentiability, the boundaries between the exponential functions must be 
considered. For the residual function 𝑅𝑅�𝑠𝑠�, the limits of 𝑠𝑠 approaching the boundary point 𝑝� from 
both sides, from area 𝑛 and from area 𝑛 � 1, must be equal: 

 𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� �  𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� (Eq. 18) 

 

First, it can be easily proven that the limits of 𝑠𝑠� (equation 10) with 𝑠𝑠 � 𝑝� are the same: 

 𝑙𝑙𝑖𝑙𝑙
����

𝑠𝑠� � � ��𝑝� � 𝑝���� ∙ 𝑎𝑎��
�������

���

� �𝑝� � 𝑝�� ∙ 𝑎𝑎��� (Eq. 19) 

 � ���𝑝� � 𝑝���� ∙ 𝑎𝑎��
�

���

 (Eq. 20) 

 � ���𝑝� � 𝑝���� ∙ 𝑎𝑎��
���

���

� �𝑝� � 𝑝���� ∙ 𝑎𝑎� � 𝑙𝑙𝑖𝑙𝑙
����

𝑠𝑠� (Eq. 21) 

This proves the equality of the first term 𝛼𝛼�𝑒𝑒����  of equation 16. Using equation 11, it can be shown 
that 𝑞�𝑛 � 1� � 0, while 𝑞�𝑛� � �𝑝� � 𝑝���� ∙ 𝑎𝑎�. Approaching 𝑝� from area 𝑛 � 1, the second and 
last term of equation 16 can be reduced as follows: 

 𝑙𝑙𝑖𝑙𝑙
����

𝛼𝛼� �
𝐵𝐵𝑎𝑎���

𝐵𝐵𝑎𝑎��� � 𝐴𝐴
𝑒𝑒��� �

𝐴𝐴𝑒𝑒����𝑒𝑒��������

𝐵𝐵𝑎𝑎��� � 𝐴𝐴
� � 𝛼𝛼�𝑒𝑒���� (Eq. 22) 

Finally, 𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� can be written in the following way: 

 𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� � 𝛼𝛼�𝑒𝑒���� � 𝛼𝛼�𝑒𝑒����  

 � 𝛼𝛼�𝐴𝐴 � �
𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
�𝑒𝑒���������������� � 1��

�

���

 (Eq. 23) 

 

(Eq. 22)

Finally, 

 
�𝛼𝛼�𝐴𝐴𝐵𝐵𝑎𝑎� � �

𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
�𝑒𝑒���������������� � 1��

���

���

� 𝛼𝛼�𝐴𝐴𝐵𝐵𝑎𝑎�
𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
 

(Eq. 17) 

The separation function 𝑍𝑍�𝑠𝑠� in equation 17 can also be written as 𝑍𝑍�𝑠𝑠� � 𝐵𝐵𝑎𝑎� ∙ 𝑅𝑅��𝑠𝑠�. 

 
Continuity and Differentiability 
Both the residual function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are sums of exponential functions. 
Exponential functions are continuously differentiable on the whole domain of ℝ. To check for 
continuity and differentiability, the boundaries between the exponential functions must be 
considered. For the residual function 𝑅𝑅�𝑠𝑠�, the limits of 𝑠𝑠 approaching the boundary point 𝑝� from 
both sides, from area 𝑛 and from area 𝑛 � 1, must be equal: 

 𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� �  𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� (Eq. 18) 

 

First, it can be easily proven that the limits of 𝑠𝑠� (equation 10) with 𝑠𝑠 � 𝑝� are the same: 

 𝑙𝑙𝑖𝑙𝑙
����

𝑠𝑠� � � ��𝑝� � 𝑝���� ∙ 𝑎𝑎��
�������

���

� �𝑝� � 𝑝�� ∙ 𝑎𝑎��� (Eq. 19) 

 � ���𝑝� � 𝑝���� ∙ 𝑎𝑎��
�

���

 (Eq. 20) 

 � ���𝑝� � 𝑝���� ∙ 𝑎𝑎��
���

���

� �𝑝� � 𝑝���� ∙ 𝑎𝑎� � 𝑙𝑙𝑖𝑙𝑙
����

𝑠𝑠� (Eq. 21) 

This proves the equality of the first term 𝛼𝛼�𝑒𝑒����  of equation 16. Using equation 11, it can be shown 
that 𝑞�𝑛 � 1� � 0, while 𝑞�𝑛� � �𝑝� � 𝑝���� ∙ 𝑎𝑎�. Approaching 𝑝� from area 𝑛 � 1, the second and 
last term of equation 16 can be reduced as follows: 

 𝑙𝑙𝑖𝑙𝑙
����

𝛼𝛼� �
𝐵𝐵𝑎𝑎���

𝐵𝐵𝑎𝑎��� � 𝐴𝐴
𝑒𝑒��� �

𝐴𝐴𝑒𝑒����𝑒𝑒��������

𝐵𝐵𝑎𝑎��� � 𝐴𝐴
� � 𝛼𝛼�𝑒𝑒���� (Eq. 22) 

Finally, 𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� can be written in the following way: 

 𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� � 𝛼𝛼�𝑒𝑒���� � 𝛼𝛼�𝑒𝑒����  

 � 𝛼𝛼�𝐴𝐴 � �
𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
�𝑒𝑒���������������� � 1��

�

���

 (Eq. 23) 

 

 can be written in the following way:

 
�𝛼𝛼�𝐴𝐴𝐵𝐵𝑎𝑎� � �

𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
�𝑒𝑒���������������� � 1��

���

���

� 𝛼𝛼�𝐴𝐴𝐵𝐵𝑎𝑎�
𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
 

(Eq. 17) 

The separation function 𝑍𝑍�𝑠𝑠� in equation 17 can also be written as 𝑍𝑍�𝑠𝑠� � 𝐵𝐵𝑎𝑎� ∙ 𝑅𝑅��𝑠𝑠�. 

 
Continuity and Differentiability 
Both the residual function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are sums of exponential functions. 
Exponential functions are continuously differentiable on the whole domain of ℝ. To check for 
continuity and differentiability, the boundaries between the exponential functions must be 
considered. For the residual function 𝑅𝑅�𝑠𝑠�, the limits of 𝑠𝑠 approaching the boundary point 𝑝� from 
both sides, from area 𝑛 and from area 𝑛 � 1, must be equal: 

 𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� �  𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� (Eq. 18) 

 

First, it can be easily proven that the limits of 𝑠𝑠� (equation 10) with 𝑠𝑠 � 𝑝� are the same: 

 𝑙𝑙𝑖𝑙𝑙
����

𝑠𝑠� � � ��𝑝� � 𝑝���� ∙ 𝑎𝑎��
�������

���

� �𝑝� � 𝑝�� ∙ 𝑎𝑎��� (Eq. 19) 

 � ���𝑝� � 𝑝���� ∙ 𝑎𝑎��
�

���

 (Eq. 20) 

 � ���𝑝� � 𝑝���� ∙ 𝑎𝑎��
���

���

� �𝑝� � 𝑝���� ∙ 𝑎𝑎� � 𝑙𝑙𝑖𝑙𝑙
����

𝑠𝑠� (Eq. 21) 

This proves the equality of the first term 𝛼𝛼�𝑒𝑒����  of equation 16. Using equation 11, it can be shown 
that 𝑞�𝑛 � 1� � 0, while 𝑞�𝑛� � �𝑝� � 𝑝���� ∙ 𝑎𝑎�. Approaching 𝑝� from area 𝑛 � 1, the second and 
last term of equation 16 can be reduced as follows: 

 𝑙𝑙𝑖𝑙𝑙
����

𝛼𝛼� �
𝐵𝐵𝑎𝑎���

𝐵𝐵𝑎𝑎��� � 𝐴𝐴
𝑒𝑒��� �

𝐴𝐴𝑒𝑒����𝑒𝑒��������

𝐵𝐵𝑎𝑎��� � 𝐴𝐴
� � 𝛼𝛼�𝑒𝑒���� (Eq. 22) 

Finally, 𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� can be written in the following way: 

 𝑙𝑙𝑖𝑙𝑙
����

𝑅𝑅�𝑠𝑠� � 𝛼𝛼�𝑒𝑒���� � 𝛼𝛼�𝑒𝑒����  

 � 𝛼𝛼�𝐴𝐴 � �
𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
�𝑒𝑒���������������� � 1��

�

���

 (Eq. 23) 

 

(Eq. 23)



agricultural engineering.eu 80(3) 183

Approaching 𝑝𝑛 from area 𝑛, the second and last term of equation 16 can be restructured as follows:

 𝑙𝑙𝑖𝑙𝑙
����

𝛼𝛼� �
𝐵𝐵𝑎𝑎�

𝐵𝐵𝑎𝑎� � 𝐴𝐴
𝑒𝑒��� �

𝐴𝐴𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
� (Eq. 24) 

 � 𝛼𝛼�𝐴𝐴
𝑒𝑒���� � 𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
� 𝛼𝛼�𝑒𝑒���� (Eq. 25) 

Finally, 𝑒𝑒����  can be expanded: 
 𝑒𝑒���� � 𝑒𝑒������𝑒𝑒������𝑒𝑒���������������� (Eq. 26) 

Inserting equation 26 into equation 25 finally yields: 

 𝑙𝑙𝑖𝑙𝑙
����

𝛼𝛼� �
𝐵𝐵𝑎𝑎�

𝐵𝐵𝑎𝑎� � 𝐴𝐴
𝑒𝑒��� �

𝐴𝐴𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
�  

 � 𝛼𝛼�𝐴𝐴
𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
�𝑒𝑒���������������� � 1� � 𝛼𝛼�𝑒𝑒���� (Eq. 27) 

The first term of equation 27 has the same form as the formula in the sum of equation 16 for the 𝑛th 
area. This indicates that the sum of equation 16 can be calculated including the 𝑛th area. Finally, the 
formula for 𝑙𝑙𝑖𝑙𝑙

����
𝑅𝑅�𝑠𝑠� is the same as equation 23. With 𝑙𝑙𝑖𝑙𝑙

����
𝑅𝑅�𝑠𝑠� �  𝑙𝑙𝑖𝑙𝑙

����
𝑅𝑅�𝑠𝑠� the continuity of 𝑅𝑅�𝑠𝑠� 

is proven. 

The residual grain function of process 𝐴𝐴 consists of a single exponential function (equation 5), trivially 
rendering 𝑅𝑅��𝑠𝑠� continuously differentiable. The continuity of 𝑅𝑅��𝑠𝑠� can be proven the same way as 
for 𝑅𝑅�𝑠𝑠�. Considering 𝑅𝑅�𝑠𝑠� �  𝑅𝑅��𝑠𝑠� � 𝑅𝑅��𝑠𝑠� with continuous 𝑅𝑅�𝑠𝑠� and 𝑅𝑅��𝑠𝑠�, 𝑅𝑅��𝑠𝑠� must be 
continuous, too. 

With 𝑍𝑍�𝑠𝑠� � 𝐵𝐵𝑎𝑎� ∙ 𝑅𝑅��𝑠𝑠�, it can be easily shown that the separation function 𝑍𝑍�𝑠𝑠� is only continuous 
in 𝑠𝑠 � 𝑝� if 𝑎𝑎� � 𝑎𝑎���. This indicates that the residual grain function 𝑅𝑅�𝑠𝑠� is only differentiable in 𝑠𝑠 �
𝑝� if 𝑎𝑎� � 𝑎𝑎���. 

 
Integration into Rotor Casing Plane 
The residual function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are integrated into the rotor casing area 
in a helical way, as shown in Figure 2. The fed material mass flow 𝑄𝑄in is uniformly distributed over the 
rotor circumference 𝑦 at the beginning of the casing plane at 𝑥 � 0. Let 𝑠𝑠�𝑥, 𝑦� be the separation 
length at position 𝑥 and 𝑦. The residual grain mass flow and the separation mass rate are given by 
𝑄𝑄in𝑏𝑏�� ∙ 𝑅𝑅�𝑠𝑠�𝑥, 𝑦�� and 𝑄𝑄in𝑏𝑏�� ∙ 𝑍𝑍�𝑠𝑠�𝑥, 𝑦��, respectively, where 𝑏𝑏 denotes the rotor circumference. 

In order to calculate the residual grain 𝐺𝐺�𝑥� at a specific rotor length 𝑥, the residual grain must be 
integrated over the entire rotor circumference 𝑦 of rotor length 𝑥: 

 𝐺𝐺�𝑥� �
𝑄𝑄in

𝑏𝑏
∙ � 𝑅𝑅�𝑠𝑠�𝑥, 𝑦�� d𝑦

�

�
 (Eq. 28) 

Equation 28 must be solved by numerical integration like trapezoidal rule or Simpson’s rule (Deuflhard 
2008). While 𝑄𝑄in and 𝑏𝑏 are constant, it has been proven that 𝑅𝑅�𝑠𝑠� is continuous independent of area 
boundaries. This allows calculating 𝐺𝐺�𝑥� with equation 28 at any length 𝑥 𝑥 ℝ. To get the separated 
mass flow ��𝑥� , 𝑥���� in a specific area range between the lengths 𝑥�  and 𝑥���, the difference between 
the rest grain mass flows at these lengths must be calculated: 

(Eq. 24) 𝑙𝑙𝑖𝑙𝑙
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𝑒𝑒���� � 𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
� 𝛼𝛼�𝑒𝑒���� (Eq. 25) 

Finally, 𝑒𝑒����  can be expanded: 
 𝑒𝑒���� � 𝑒𝑒������𝑒𝑒������𝑒𝑒���������������� (Eq. 26) 

Inserting equation 26 into equation 25 finally yields: 

 𝑙𝑙𝑖𝑙𝑙
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𝐵𝐵𝑎𝑎�
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𝐵𝐵𝑎𝑎� � 𝐴𝐴
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 � 𝛼𝛼�𝐴𝐴
𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
�𝑒𝑒���������������� � 1� � 𝛼𝛼�𝑒𝑒���� (Eq. 27) 

The first term of equation 27 has the same form as the formula in the sum of equation 16 for the 𝑛th 
area. This indicates that the sum of equation 16 can be calculated including the 𝑛th area. Finally, the 
formula for 𝑙𝑙𝑖𝑙𝑙

����
𝑅𝑅�𝑠𝑠� is the same as equation 23. With 𝑙𝑙𝑖𝑙𝑙

����
𝑅𝑅�𝑠𝑠� �  𝑙𝑙𝑖𝑙𝑙

����
𝑅𝑅�𝑠𝑠� the continuity of 𝑅𝑅�𝑠𝑠� 

is proven. 

The residual grain function of process 𝐴𝐴 consists of a single exponential function (equation 5), trivially 
rendering 𝑅𝑅��𝑠𝑠� continuously differentiable. The continuity of 𝑅𝑅��𝑠𝑠� can be proven the same way as 
for 𝑅𝑅�𝑠𝑠�. Considering 𝑅𝑅�𝑠𝑠� �  𝑅𝑅��𝑠𝑠� � 𝑅𝑅��𝑠𝑠� with continuous 𝑅𝑅�𝑠𝑠� and 𝑅𝑅��𝑠𝑠�, 𝑅𝑅��𝑠𝑠� must be 
continuous, too. 

With 𝑍𝑍�𝑠𝑠� � 𝐵𝐵𝑎𝑎� ∙ 𝑅𝑅��𝑠𝑠�, it can be easily shown that the separation function 𝑍𝑍�𝑠𝑠� is only continuous 
in 𝑠𝑠 � 𝑝� if 𝑎𝑎� � 𝑎𝑎���. This indicates that the residual grain function 𝑅𝑅�𝑠𝑠� is only differentiable in 𝑠𝑠 �
𝑝� if 𝑎𝑎� � 𝑎𝑎���. 

 
Integration into Rotor Casing Plane 
The residual function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are integrated into the rotor casing area 
in a helical way, as shown in Figure 2. The fed material mass flow 𝑄𝑄in is uniformly distributed over the 
rotor circumference 𝑦 at the beginning of the casing plane at 𝑥 � 0. Let 𝑠𝑠�𝑥, 𝑦� be the separation 
length at position 𝑥 and 𝑦. The residual grain mass flow and the separation mass rate are given by 
𝑄𝑄in𝑏𝑏�� ∙ 𝑅𝑅�𝑠𝑠�𝑥, 𝑦�� and 𝑄𝑄in𝑏𝑏�� ∙ 𝑍𝑍�𝑠𝑠�𝑥, 𝑦��, respectively, where 𝑏𝑏 denotes the rotor circumference. 

In order to calculate the residual grain 𝐺𝐺�𝑥� at a specific rotor length 𝑥, the residual grain must be 
integrated over the entire rotor circumference 𝑦 of rotor length 𝑥: 

 𝐺𝐺�𝑥� �
𝑄𝑄in

𝑏𝑏
∙ � 𝑅𝑅�𝑠𝑠�𝑥, 𝑦�� d𝑦

�

�
 (Eq. 28) 

Equation 28 must be solved by numerical integration like trapezoidal rule or Simpson’s rule (Deuflhard 
2008). While 𝑄𝑄in and 𝑏𝑏 are constant, it has been proven that 𝑅𝑅�𝑠𝑠� is continuous independent of area 
boundaries. This allows calculating 𝐺𝐺�𝑥� with equation 28 at any length 𝑥 𝑥 ℝ. To get the separated 
mass flow ��𝑥� , 𝑥���� in a specific area range between the lengths 𝑥�  and 𝑥���, the difference between 
the rest grain mass flows at these lengths must be calculated: 

(Eq. 25)

Finally, e–A𝑝𝑛 can be expanded:

 𝑙𝑙𝑖𝑙𝑙
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𝛼𝛼� �
𝐵𝐵𝑎𝑎�
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� (Eq. 24) 

 � 𝛼𝛼�𝐴𝐴
𝑒𝑒���� � 𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
� 𝛼𝛼�𝑒𝑒���� (Eq. 25) 

Finally, 𝑒𝑒����  can be expanded: 
 𝑒𝑒���� � 𝑒𝑒������𝑒𝑒������𝑒𝑒���������������� (Eq. 26) 

Inserting equation 26 into equation 25 finally yields: 

 𝑙𝑙𝑖𝑙𝑙
����

𝛼𝛼� �
𝐵𝐵𝑎𝑎�

𝐵𝐵𝑎𝑎� � 𝐴𝐴
𝑒𝑒��� �

𝐴𝐴𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
�  

 � 𝛼𝛼�𝐴𝐴
𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
�𝑒𝑒���������������� � 1� � 𝛼𝛼�𝑒𝑒���� (Eq. 27) 

The first term of equation 27 has the same form as the formula in the sum of equation 16 for the 𝑛th 
area. This indicates that the sum of equation 16 can be calculated including the 𝑛th area. Finally, the 
formula for 𝑙𝑙𝑖𝑙𝑙

����
𝑅𝑅�𝑠𝑠� is the same as equation 23. With 𝑙𝑙𝑖𝑙𝑙

����
𝑅𝑅�𝑠𝑠� �  𝑙𝑙𝑖𝑙𝑙

����
𝑅𝑅�𝑠𝑠� the continuity of 𝑅𝑅�𝑠𝑠� 

is proven. 

The residual grain function of process 𝐴𝐴 consists of a single exponential function (equation 5), trivially 
rendering 𝑅𝑅��𝑠𝑠� continuously differentiable. The continuity of 𝑅𝑅��𝑠𝑠� can be proven the same way as 
for 𝑅𝑅�𝑠𝑠�. Considering 𝑅𝑅�𝑠𝑠� �  𝑅𝑅��𝑠𝑠� � 𝑅𝑅��𝑠𝑠� with continuous 𝑅𝑅�𝑠𝑠� and 𝑅𝑅��𝑠𝑠�, 𝑅𝑅��𝑠𝑠� must be 
continuous, too. 

With 𝑍𝑍�𝑠𝑠� � 𝐵𝐵𝑎𝑎� ∙ 𝑅𝑅��𝑠𝑠�, it can be easily shown that the separation function 𝑍𝑍�𝑠𝑠� is only continuous 
in 𝑠𝑠 � 𝑝� if 𝑎𝑎� � 𝑎𝑎���. This indicates that the residual grain function 𝑅𝑅�𝑠𝑠� is only differentiable in 𝑠𝑠 �
𝑝� if 𝑎𝑎� � 𝑎𝑎���. 

 
Integration into Rotor Casing Plane 
The residual function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are integrated into the rotor casing area 
in a helical way, as shown in Figure 2. The fed material mass flow 𝑄𝑄in is uniformly distributed over the 
rotor circumference 𝑦 at the beginning of the casing plane at 𝑥 � 0. Let 𝑠𝑠�𝑥, 𝑦� be the separation 
length at position 𝑥 and 𝑦. The residual grain mass flow and the separation mass rate are given by 
𝑄𝑄in𝑏𝑏�� ∙ 𝑅𝑅�𝑠𝑠�𝑥, 𝑦�� and 𝑄𝑄in𝑏𝑏�� ∙ 𝑍𝑍�𝑠𝑠�𝑥, 𝑦��, respectively, where 𝑏𝑏 denotes the rotor circumference. 

In order to calculate the residual grain 𝐺𝐺�𝑥� at a specific rotor length 𝑥, the residual grain must be 
integrated over the entire rotor circumference 𝑦 of rotor length 𝑥: 

 𝐺𝐺�𝑥� �
𝑄𝑄in

𝑏𝑏
∙ � 𝑅𝑅�𝑠𝑠�𝑥, 𝑦�� d𝑦
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�
 (Eq. 28) 

Equation 28 must be solved by numerical integration like trapezoidal rule or Simpson’s rule (Deuflhard 
2008). While 𝑄𝑄in and 𝑏𝑏 are constant, it has been proven that 𝑅𝑅�𝑠𝑠� is continuous independent of area 
boundaries. This allows calculating 𝐺𝐺�𝑥� with equation 28 at any length 𝑥 𝑥 ℝ. To get the separated 
mass flow ��𝑥� , 𝑥���� in a specific area range between the lengths 𝑥�  and 𝑥���, the difference between 
the rest grain mass flows at these lengths must be calculated: 

(Eq. 26)

Inserting equation 26 into equation 25 finally yields:

 𝑙𝑙𝑖𝑙𝑙
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𝑒𝑒���� � 𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
� 𝛼𝛼�𝑒𝑒���� (Eq. 25) 

Finally, 𝑒𝑒����  can be expanded: 
 𝑒𝑒���� � 𝑒𝑒������𝑒𝑒������𝑒𝑒���������������� (Eq. 26) 

Inserting equation 26 into equation 25 finally yields: 

 𝑙𝑙𝑖𝑙𝑙
����

𝛼𝛼� �
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𝑒𝑒��� �

𝐴𝐴𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
�  

 � 𝛼𝛼�𝐴𝐴
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𝐵𝐵𝑎𝑎� � 𝐴𝐴
�𝑒𝑒���������������� � 1� � 𝛼𝛼�𝑒𝑒���� (Eq. 27) 

The first term of equation 27 has the same form as the formula in the sum of equation 16 for the 𝑛th 
area. This indicates that the sum of equation 16 can be calculated including the 𝑛th area. Finally, the 
formula for 𝑙𝑙𝑖𝑙𝑙

����
𝑅𝑅�𝑠𝑠� is the same as equation 23. With 𝑙𝑙𝑖𝑙𝑙

����
𝑅𝑅�𝑠𝑠� �  𝑙𝑙𝑖𝑙𝑙

����
𝑅𝑅�𝑠𝑠� the continuity of 𝑅𝑅�𝑠𝑠� 

is proven. 

The residual grain function of process 𝐴𝐴 consists of a single exponential function (equation 5), trivially 
rendering 𝑅𝑅��𝑠𝑠� continuously differentiable. The continuity of 𝑅𝑅��𝑠𝑠� can be proven the same way as 
for 𝑅𝑅�𝑠𝑠�. Considering 𝑅𝑅�𝑠𝑠� �  𝑅𝑅��𝑠𝑠� � 𝑅𝑅��𝑠𝑠� with continuous 𝑅𝑅�𝑠𝑠� and 𝑅𝑅��𝑠𝑠�, 𝑅𝑅��𝑠𝑠� must be 
continuous, too. 

With 𝑍𝑍�𝑠𝑠� � 𝐵𝐵𝑎𝑎� ∙ 𝑅𝑅��𝑠𝑠�, it can be easily shown that the separation function 𝑍𝑍�𝑠𝑠� is only continuous 
in 𝑠𝑠 � 𝑝� if 𝑎𝑎� � 𝑎𝑎���. This indicates that the residual grain function 𝑅𝑅�𝑠𝑠� is only differentiable in 𝑠𝑠 �
𝑝� if 𝑎𝑎� � 𝑎𝑎���. 

 
Integration into Rotor Casing Plane 
The residual function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are integrated into the rotor casing area 
in a helical way, as shown in Figure 2. The fed material mass flow 𝑄𝑄in is uniformly distributed over the 
rotor circumference 𝑦 at the beginning of the casing plane at 𝑥 � 0. Let 𝑠𝑠�𝑥, 𝑦� be the separation 
length at position 𝑥 and 𝑦. The residual grain mass flow and the separation mass rate are given by 
𝑄𝑄in𝑏𝑏�� ∙ 𝑅𝑅�𝑠𝑠�𝑥, 𝑦�� and 𝑄𝑄in𝑏𝑏�� ∙ 𝑍𝑍�𝑠𝑠�𝑥, 𝑦��, respectively, where 𝑏𝑏 denotes the rotor circumference. 

In order to calculate the residual grain 𝐺𝐺�𝑥� at a specific rotor length 𝑥, the residual grain must be 
integrated over the entire rotor circumference 𝑦 of rotor length 𝑥: 

 𝐺𝐺�𝑥� �
𝑄𝑄in

𝑏𝑏
∙ � 𝑅𝑅�𝑠𝑠�𝑥, 𝑦�� d𝑦

�

�
 (Eq. 28) 

Equation 28 must be solved by numerical integration like trapezoidal rule or Simpson’s rule (Deuflhard 
2008). While 𝑄𝑄in and 𝑏𝑏 are constant, it has been proven that 𝑅𝑅�𝑠𝑠� is continuous independent of area 
boundaries. This allows calculating 𝐺𝐺�𝑥� with equation 28 at any length 𝑥 𝑥 ℝ. To get the separated 
mass flow ��𝑥� , 𝑥���� in a specific area range between the lengths 𝑥�  and 𝑥���, the difference between 
the rest grain mass flows at these lengths must be calculated: 

(Eq. 27)

The first term of equation 27 has the same form as the formula in the sum of equation 16 for the 
nth area. This indicates that the sum of equation 16 can be calculated including the 𝑛th area. Finally, 
the formula for 
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(Eq. 17) 

The separation function 𝑍𝑍�𝑠𝑠� in equation 17 can also be written as 𝑍𝑍�𝑠𝑠� � 𝐵𝐵𝑎𝑎� ∙ 𝑅𝑅��𝑠𝑠�. 

 
Continuity and Differentiability 
Both the residual function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are sums of exponential functions. 
Exponential functions are continuously differentiable on the whole domain of ℝ. To check for 
continuity and differentiability, the boundaries between the exponential functions must be 
considered. For the residual function 𝑅𝑅�𝑠𝑠�, the limits of 𝑠𝑠 approaching the boundary point 𝑝� from 
both sides, from area 𝑛 and from area 𝑛 � 1, must be equal: 
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 the continuity of 
R(s) is proven.

The residual grain function of process A consists of a single exponential function (equation 5), 
trivially rendering RA(s) continuously differentiable. The continuity of RB(s) can be proven the same 
way as for R(s). Considering R(s) = RA(s) + RB(s) with continuous R(s) and RA(s); RB(s) must be con-
tinuous, too.

With Z(s) = Ba𝑛 · RB(s), it can be easily shown that the separation function Z(s) is only continuous 
in s = 𝑝𝑛 if a𝑛 = a𝑛 + 1. This indicates that the residual grain function R(s) is only differentiable in   
s = 𝑝𝑛 if a𝑛 = a𝑛 + 1.

Integration into Rotor Casing Plane
The residual function R(s) and the separation function Z(s) are integrated into the rotor casing area 
in a helical way, as shown in Figure 2. The fed material mass flow Q𝑖𝑛 is uniformly distributed over 
the rotor circumference at the beginning of the casing plane at 𝑥 = 0. Let s(𝑥,𝑦) be the separation 
length at position 𝑥 and 𝑦. The residual grain mass flow and the separation mass rate are given by  
Q𝑖𝑛b–1 · R(s(𝑥,𝑦) and Q𝑖𝑛b–1 · Z(s(𝑥,𝑦), respectively, where b denotes the rotor circumference.

In order to calculate the residual grain G(𝑥) at a specific rotor length , the residual grain must be 
integrated over the entire rotor circumference 𝑦 of rotor length 𝑥:

 𝑙𝑙𝑖𝑙𝑙
����

𝛼𝛼� �
𝐵𝐵𝑎𝑎�

𝐵𝐵𝑎𝑎� � 𝐴𝐴
𝑒𝑒��� �

𝐴𝐴𝑒𝑒������𝑒𝑒������

𝐵𝐵𝑎𝑎� � 𝐴𝐴
� (Eq. 24) 

 � 𝛼𝛼�𝐴𝐴
𝑒𝑒���� � 𝑒𝑒������𝑒𝑒������
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� 𝛼𝛼�𝑒𝑒���� (Eq. 25) 

Finally, 𝑒𝑒����  can be expanded: 
 𝑒𝑒���� � 𝑒𝑒������𝑒𝑒������𝑒𝑒���������������� (Eq. 26) 

Inserting equation 26 into equation 25 finally yields: 
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The first term of equation 27 has the same form as the formula in the sum of equation 16 for the 𝑛th 
area. This indicates that the sum of equation 16 can be calculated including the 𝑛th area. Finally, the 
formula for 𝑙𝑙𝑖𝑙𝑙

����
𝑅𝑅�𝑠𝑠� is the same as equation 23. With 𝑙𝑙𝑖𝑙𝑙
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is proven. 

The residual grain function of process 𝐴𝐴 consists of a single exponential function (equation 5), trivially 
rendering 𝑅𝑅��𝑠𝑠� continuously differentiable. The continuity of 𝑅𝑅��𝑠𝑠� can be proven the same way as 
for 𝑅𝑅�𝑠𝑠�. Considering 𝑅𝑅�𝑠𝑠� �  𝑅𝑅��𝑠𝑠� � 𝑅𝑅��𝑠𝑠� with continuous 𝑅𝑅�𝑠𝑠� and 𝑅𝑅��𝑠𝑠�, 𝑅𝑅��𝑠𝑠� must be 
continuous, too. 

With 𝑍𝑍�𝑠𝑠� � 𝐵𝐵𝑎𝑎� ∙ 𝑅𝑅��𝑠𝑠�, it can be easily shown that the separation function 𝑍𝑍�𝑠𝑠� is only continuous 
in 𝑠𝑠 � 𝑝� if 𝑎𝑎� � 𝑎𝑎���. This indicates that the residual grain function 𝑅𝑅�𝑠𝑠� is only differentiable in 𝑠𝑠 �
𝑝� if 𝑎𝑎� � 𝑎𝑎���. 

 
Integration into Rotor Casing Plane 
The residual function 𝑅𝑅�𝑠𝑠� and the separation function 𝑍𝑍�𝑠𝑠� are integrated into the rotor casing area 
in a helical way, as shown in Figure 2. The fed material mass flow 𝑄𝑄in is uniformly distributed over the 
rotor circumference 𝑦 at the beginning of the casing plane at 𝑥 � 0. Let 𝑠𝑠�𝑥, 𝑦� be the separation 
length at position 𝑥 and 𝑦. The residual grain mass flow and the separation mass rate are given by 
𝑄𝑄in𝑏𝑏�� ∙ 𝑅𝑅�𝑠𝑠�𝑥, 𝑦�� and 𝑄𝑄in𝑏𝑏�� ∙ 𝑍𝑍�𝑠𝑠�𝑥, 𝑦��, respectively, where 𝑏𝑏 denotes the rotor circumference. 

In order to calculate the residual grain 𝐺𝐺�𝑥� at a specific rotor length 𝑥, the residual grain must be 
integrated over the entire rotor circumference 𝑦 of rotor length 𝑥: 

 𝐺𝐺�𝑥� �
𝑄𝑄in

𝑏𝑏
∙ � 𝑅𝑅�𝑠𝑠�𝑥, 𝑦�� d𝑦

�

�
 (Eq. 28) 

Equation 28 must be solved by numerical integration like trapezoidal rule or Simpson’s rule (Deuflhard 
2008). While 𝑄𝑄in and 𝑏𝑏 are constant, it has been proven that 𝑅𝑅�𝑠𝑠� is continuous independent of area 
boundaries. This allows calculating 𝐺𝐺�𝑥� with equation 28 at any length 𝑥 𝑥 ℝ. To get the separated 
mass flow ��𝑥� , 𝑥���� in a specific area range between the lengths 𝑥�  and 𝑥���, the difference between 
the rest grain mass flows at these lengths must be calculated: 

(Eq. 28)

Equation 28 must be solved by numerical integration methods such as the trapezoidal rule or 
Simpson’s rule ( Deuflhard 2008). While Q𝑖𝑛 and b are constant, it has been proven that R(s) is con-
tinuous independent of area boundaries. This allows calculating G(𝑥) with equation 28 at any length 
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𝑥 ∈ ℝ . To get the separated mass flow M(𝑥𝑖, 𝑥𝑖 + 1) in a specific area range between the lengths 𝑥𝑖 and 
𝑥𝑖 + 1 , the difference between the rest grain mass flows at these lengths must be calculated:

 ��𝑥� , 𝑥���� � 𝐺𝐺�𝑥�� � 𝐺𝐺�𝑥���� (Eq. 29) 

 
Test-Setup 
Multiple test runs with dry wheat and with different rotor settings have been recorded using a rotor 
test bench (Figure 4), including two market available rotor types with major differences in geometry. 
The ratio between the concave and roof panel area sizes of rotor type 1 was about 10% smaller than 
rotor type 2. But the rotor circumference of rotor type 1 was more than 20% larger than the rotor 
circumference of rotor type 2. 

 

Figure 4: Test Bench Setup with sensors underneath the rotor unit and twelve boxes for collecting grain mass reference. 

 

For the test runs, different throughputs and material compositions of grain and straw have been 
considered. With each material composition and throughput, the rotor speed has been adjusted in 
recommended ranges for dry wheat. 

A two-dimensional grid aligned sensor network with structure-borne noise sensors has been installed 
underneath the rotor unit. For reference, twelve boxes for material collection have been installed 
underneath the rotor unit and the sensor network. After each test run, the collected material has been 
cleaned and the grain mass measured. The ratio between measured grain count of the sensor network 
and the collected reference grain mass has been determined for each test run by estimating the mass 
per thousand grains. 

As model references, two different approaches have been tested: As a first reference, Bjork’s method 
using exponential functions (Bjork 1991) has been tested. For each position at rotor length 𝑥, an 
exponential function 𝑍𝑍���𝑦� has been fitted onto the sensor values along the rotor circumference 𝑦. 
Based on each average sensor value �̿�𝑣� with 

 �̿�𝑣� �
1
𝑏𝑏

� 𝑍𝑍���𝑦� d𝑦
�

�
 (Eq. 30) 

with rotor circumference size 𝑏𝑏, Böttinger’s separation function 𝑍𝑍��𝑠𝑠� (equation 9) has been fitted onto 
the sensor values along the rotor length 𝑥. As a second reference, Böttinger’s separation function 𝑍𝑍��𝑠𝑠� 
(equation 9) has been fitted onto a single sensor line at the beginning of the concave area along the 
rotor length 𝑥. 

For all reference models, the predicted masses per box ���𝑥� , 𝑥���� between the rotor lengths 𝑥�  and 
𝑥��� are the differences between the residual grain mass flows 𝑅𝑅��𝑥�� and 𝑅𝑅��𝑥���� (the rotor length 𝑥 
equals the separation length 𝑠𝑠) simply multiplied by the rotor circumference 𝑏𝑏: 

 

(Eq. 29)

Test-Setup
Multiple test runs with dry wheat and with different rotor settings have been recorded on a rotor test 
bench (Figure 4), including two market available rotor types with major differences in geometry. The 
ratio between the concave and roof panel area sizes of rotor type 1 was about 10 % smaller than that 
of rotor type 2. But the rotor circumference of rotor type 1 was more than 20 % larger than that of the 
rotor circumference of rotor type 2.

For the test runs, different throughputs and material compositions of grain and straw have been 
considered. With each material composition and throughput, the rotor speed has been adjusted in 
recommended ranges for dry wheat.

A two-dimensional grid-aligned sensor network with structure-borne noise sensors was installed 
underneath the rotor unit. For reference, twelve boxes for material collection were installed under-
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For all reference models, the predicted masses per box  ���𝑥� , 𝑥���� � 𝑏𝑏 ∙ �𝑅𝑅��𝑥�� � 𝑅𝑅��𝑥����� (Eq. 31) 
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the ground-truth, whereas the reference models tend to over- and underestimate the grain masses for 
the first and last boxes, respectively. For the last boxes, all models overestimate the collected grain 
masses, while the prediction of the two-dimensional crop flow separation model is closest to the 
reference masses. 
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Results 
The two-dimensional separation model and the reference models were fitted to the sensor values for 
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were calculated for each test run. A positive and negative bias thus indicate an underestimation and 
overestimation of the model, respectively (Entekhabi et al. 2009, Hyndman and Koehler 2006). In 
Table 1, the means and standard deviations of the bias and the residual deviations over all test runs 
are presented, separately for both tested rotor types.

The most important difference between the two-dimensional crop flow separation model and the ref-
erence models is the bias. The mean bias of the two-dimensional crop flow separation model is the best 
for both rotor types, with one rotor type slightly overestimated and the other one underestimated. While 
the model for a single sensor line fits with rotor type 2 with the smallest standard deviation for the bias, 
rotor type 1 was overestimated. Bjork’s method shows both underestimation and overestimation. Inter-
estingly, the residual deviation is slightly worse for the two-dimensional crop flow separation model.

Table 1: Results of the two-dimensional crop flow separation model (2D Model) and the reference models,  
model approach by Bjork (Bjork’ Method) and model fits on single sensor line with Böttinger’s model (Sensor Line).  
For the Bias and the residual deviation, both mean and standard deviation (STD) are listed.

Model Rotortype Bias Mean Bias STD Residual Mean Residual STD

2D Model
1 -8.37 % 26.79 % 29.13 % 31.09 %
2 5.18 % 17.46 % 26.95 % 15.31 %

Bjork’s Method
1 -17.58 % 20.11 % 20.12 % 11.86 %
2 17.81 % 10.00 % 24.80 % 6.06 %

Sensor Line
1 -29.04 % 21.85 % 25.13 % 28.09 %
2 -6.23 % 9.35 % 22.24 % 6.39 %

Discussion
The advantage of the two-dimensional crop flow separation model is the inclusion of the rotor geome-
try. This leads to the lowest relative mean bias in absolute values in this comparison. Both reference 
models show both overestimation and underestimation for at least one rotor type. Evidently, the rotor 
circumference b alone (as in formula 31) is not sufficient for the reference models to predict the grain 
mass in width of the separation area. A calibration factor, at minimum including the rotor circumfer-
ence and the ratio between the concave and roof panel areas, must be evaluated.

The residual deviation is slightly worse for the two-dimensional crop flow separation model. With 
the assumption of normally distributed residual deviation, the models’ residual deviations could be 
reduced by taking the mean over time. A bias correction can only be achieved by calibration, so it is 
the more important metric, in our case. With its bias closest to zero, the novel two-dimensional crop 
flow separation model can thus be considered the superior model for rotor units.

Conclusions
In this study, a two-dimensional crop flow separation model for rotor units was proposed, based on 
Böttinger’s separation model for straw walkers and sieve-based cleaning units, as well as the helical 
transport trajectories of the rotor unit defined by Wacker. The model is designed as a sum of sep-
aration models for each area the material is passing through, considering the specific separation 
behavior of each area. The grain residual functions of the two-dimensional model were shown to be 
continuous in each point in the separation area. This indicates that the separated grain mass can be 
calculated for each position.
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In a test bench setup, the two-dimensional crop flow separation model was compared to Bjork’s 
model approach, and Böttinger’s one-dimensional model. The models were fitted onto a grid-aligned 
sensor network for grain estimation to predict the separated grain masses of separation sections 
validated by collected grain material.

While Bjork’s method and Böttinger’s one-dimensional approach still need calibration factors, the 
novel two-dimensional crop flow separation model achieved the lowest bias in absolute values. Its 
advantage is the inclusion of the rotor geometry. This implies further development of the model to 
become more independent of material characteristics and machine settings. This can be achieved, for 
example, by a more precise helical transport trajectory description of the material thrust in the rotor 
unit.
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