
agricultural engineering.eu 80(1), 2025, 73–103

Organic Computing for  
Intelligent Agricultural Technology:  
Perspective and Case Study
Anthony Stein, Jonas Boysen

Organic Computing (OC) refers to a systems engineering paradigm for designing intelligent 
technical systems which are deployed in complex real-world environments. With a focus on 
nature-inspired mechanisms, OC aims at the transfer of principles observable in nature to 
complex technical systems to endow them with lifelike qualities such as intelligence, flexi-
bility, robustness, and the ability to self-organize. Agricultural engineering develops highly 
automated and autonomous technology for sustainable agricultural production which must 
work reliably in dynamic real-world environments. Higher degrees of systems’ autonomy and 
intelligence require an increasing number of information technology components to interact 
over various system levels what in turn increases system complexity. In this article, we cast 
light on the suitability of the OC paradigm for designing Intelligent Agricultural Technology 
systems. In a case study, we adopt an OC approach for the optimization of secondary tillage 
and report on promising empirical results from integrating contemporary artificial intelligence 
methods into a multi-level system architecture to achieve an intelligent tractor control.
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The scientific discipline of agricultural engineering is the study and application of engineering prin-
ciples dedicated to agriculture. It involves the design and continual optimization of agricultural ma-
chinery and processes as well as the general development of technological advances to sustainably 
produce food, feed, fiber, fuels and energy. Examples comprise the automation of plant production 
processes, the conversion of bio-based resources to processable or directly marketable products, as 
well as modern technological concepts for animal husbandry. Past and current developments, starting 
from mechanization, over computer-aided automation to the rapidly progressing digital transforma-
tion, have each led to substantial technological advancements in agricultural production, and further 
leaps through e. g., autonomous agricultural machinery and robots, decision support systems and 
assistants leveraging latest breakthroughs in artificial intelligence (AI) are expected (Fountas et al. 
2024). Such a rapid development as currently observable in the digitalization of agriculture, however, 
often unfolds as double-edged sword where new possibilities have to be weighed against co-occurring 
challenges. In order to obtain broad acceptance of emerging deeply digitalized solutions, it must be 
systematically dealt with concerns introduced by integrating state of the art agricultural engineering 
practice with latest information and communication technology (ICT) approaches pervading several 
technological scales. The resulting complex agricultural technology systems thus will not only man-
ifest in the form of machinery performing agricultural tasks in the fields or barns anymore. Future 
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agricultural technology will increasingly also take effect on superordinate technological levels in the 
digital agriculture system, for instance at the individual farm’s, inter-farm and purely virtual or data 
space levels (Bökle et al. 2022) for a discussion on such a framework). In our article, we refer to such 
technical systems affecting one or several technological levels through the incorporation of digital 
technologies broadly as AgTech systems. Due to the increasing complexity of modern AgTech systems, 
we argue that systems thinking and new approaches of system engineering are needed. To this end, 
intelligent system architectures that assure resilient operations across all technological scales are 
deemed key.

Organic Computing (OC) refers to a systems engineering paradigm for building ‘intelligent’, i. e., 
adaptive, robust and flexible technical systems which are deployed in complex real-world environ-
ments. Therefore, OC heavily draws inspiration from biological systems and how they deal with the 
complexity and continual change as observed in nature. Aiming at the transfer to complex technical 
systems, OC sets a strong methodological focus on bio-inspired mechanisms to endow the systems 
with ‘lifelike’ qualities such as intelligence, self-organization or resilience. As a systems engineering 
discipline, OC provides principled methodologies and frameworks for building such complex systems 
which are subject to unanticipated disturbances and continual change when deployed in real-world 
environments. 

In this article, we will cast light on how an AgTech system can be understood and modelled as an 
OC system. We therefore first provide an overview of the OC idea and recapitulate the well-known 
observer/controller-architecture. Afterwards, we review previous work on applying OC to agricultur-
al settings. We then shift our perspective on digital agriculture settings and introduce our vision of 
intelligent agricultural technology systems. Subsequently, we touch upon a current case study where 
we demonstrate the utilization of a multi-level variant of the generic observer/controller system mod-
el to render the complex technical system of a tractor-implement combination for secondary tillage 
into such an intelligent system. Our system under observation and control comprises a power harrow  
attached to a tractor as well as a sensing system that observes the state of the soil and the machine. 
We discuss how this ‘organic system’ implements a feedback control loop and how intelligent ma-
chine adaptation behavior can be achieved by means of model-based (offline) reinforcement learning 
and discuss our findings. 

The contribution of our work is the elaboration of a computer science perspective on the design of 
intelligent agricultural technology systems. Drawing from the knowledge available in the overarch-
ing discipline of self-adaptive and self-organizing systems research and their numerous approaches 
manifesting in initiatives such as autonomic computing (Kephart and Chess 2003), self-aware com-
puting systems (Kounev et al. 2017), lifelike computing systems (Stein et al. 2021), in this work we 
specifically focus on an Organic Computing approach. We investigate the hypothesis that “Organic 
Computing provides a viable approach to systematically design and implement intelligent agricul-
tural technology systems”. By reporting on a conducted case study investigating the optimization 
potential within the process of secondary tillage, we provide initial empirical evidence that supports 
our hypothesis. 

The motivation and scientific significance of our work results from the following aspects: A con-
tinuing rise in operation complexity of agricultural machines can be observed which is driven by the 
increasing integration of digital tools and resulting additional steps in the process workflows. Numer-
ous decisions must be made by the farmers and machine operators which need to be properly trained 
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to deal with the emerging complexity due to the newest advances in the machinery and encompassing 
digitized processes. Taking a systems engineering approach and drawing from the recent advances 
in artificial intelligence (AI) technology, we attempt to advance the interdisciplinary research field of 
mastering the complexity of agricultural processes following the OC paradigm. To this end, our pro-
posed agent architecture (see section “System Model”), contextualized to the domain of agricultural 
engineering, can serve as a reference model to fuel the exchange between the agricultural engineering 
and AI communities originating from the disciplines of mechanical engineering and computer science. 
Furthermore, our work is intended to revive the research work on Organic Computing applied to ag-
ricultural engineering challenges. For that, we provide an overview of past work in that intersection, 
classify it into the overarching domain of self-adaptive and self-organizing systems research and report 
on an exemplary case study that advances the field by incorporating contemporary AI techniques into 
an OC control loop.

Background
Organic Computing
Building technical systems with information processing inspired by the self-organization capability 
of natural systems lies at the heart of OC. It defines itself as a systems engineering paradigm rooting 
in the computational engineering discipline. Thereby, OC is strongly intersecting with many other 
branches of computer science these days, most prominently with artificial intelligence, software engi-
neering and embedded systems. OC’s inception dates back to the early 2000s, where the conceptual 
idea was presented in a research seminar and published in a position paper (VDE and GI e.V. 2003). 
A comprehensive discussion on what OC is and different perspectives for how to define the term can 
be found in the most recent textbook of Müller-Schloer and Tomforde (2017d). In Tomforde et al. 
(2017) a concise definition for an OC system is provided, which we adopt for this paper:

“An OC system is a technical system equipped with sensors to perceive its environment and actuators to 
manipulate it. It adapts autonomously and dynamically to changing conditions in its environment. This 
adaptation process influences the system’s utility, which is continually optimized by the OC system itself. 
To allow for such an adaptive behavior, it employs so-called self-x mechanisms.”

OC research quickly attracted high attention leading to the establishment of a priority program 
within the German Research Foundation (SPP1183) running from 2005 to 2011. Since that time, tre-
mendous progress has been sparked by the OC community, what led to a sort of OC toolbox comprising 
methods and principles for designing complex and trustworthy technical systems (Müller-Schloer 
et al. 2011, Reif et al. 2016). Applications of OC technology (Müller-Schloer and Tomforde 2017a) 
manifested in several research projects and technical systems embedded into real-world domains such 
as urban traffic control (Prothmann et al. 2011, Stein et al. 2016), self-adaptive network protocols, 
e. g., (Tomforde et al. 2011b), self-learning system-on-chip architectures, e. g., (Bernauer et al. 2011,  
Zeppenfeld and Herkersdorf 2011), an organic robot control architecture (Hartmann et al. 2013), 
smart camera control systems (Müller-Schloer and Tomforde 2017c, Rudolph et al. 2019), or decen-
tralized energy and smart grid management (Allerding et al. 2011, Mauser et al. 2015, Reif et 
al. 2016).  The research conducted in OC and related initiatives dealing with the design of future 
computing systems mutually fertilized each other. Autonomic computing, self-aware computing, 
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and general research on self-adaptive and self-organizing systems are the most prominent examples 
(Müller-Schloer and Tomforde 2017e). Out of the developed toolbox, one particular artifact is the 
generic observer-controller architecture, as schematically depicted in Figure 1. 

This architecture can also be interpreted as an agent blueprint for building an AI system. Thus, we 
use the terms O/C architecture and OC agent architecture interchangeably in the remainder of this 
paper. A generic OC agent comprises at least two layers: The bottom layer, or often denoted layer 0, 
denotes the so-called system under observation and control (SuOC). That is the productive system 
which is typically situated within a non-stationary environment. The system uses sensors to perceive 
its surrounding environment conditions and uses the sensory data as input to be further processed. 
After the data processing, control actions are selected and from that actuator signals are derived. 
These control actions eventually lead to modifications of the productive environment and in turn 
influence the input signals observable by the sensors. Over the SuOC’s lifetime, this results in a con-
tinual data stream which can be observed and controlled by upper system layers. This basically forms 
a closed-loop control system which allows the adaptation of the SuOC’s behavior in a way to optimize 
its utility. The SuOC can consist of only one technical system, such as a production plant or a mobile 
robot, but can also be a collection of semi-autonomous entities, e. g., a robot swarm or another kind of 
distributed computing system (e. g., a grid or peer-to-peer system or a smart camera network). This in 
turn already implies the formation of OC agent hierarchies, which we will not further discuss here. 
The interested reader is referred to Tomforde et al. (2011c) for further details. We still note that the 
further elaboration is indeed worthwhile considering the pervasion of digital technology across dif-
ferent technological scales in agriculture, i. e., from the machine, over the farm- and inter-farm level, 
to the virtual cloud level (Bökle et al. 2022). However, because this would far exceed the scope of this 
paper, we leave this discussion for future work. 

Figure 1: Generic Observer/Controller architecture of Organic Computing
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An OC agent sets at least one layer – usually denoted Layer 1 – on top of the SuOC. This layer 
comprises an observer as well as a controller component. The observer gathers the raw data from the 
data stream of the SuOC. It has subcomponents to preprocess, filter, and further analyze the system 
parameters observed through sensor readings. For instance, if the SuOC comprises many (semi-) 
autonomous entities, the observer could analyze the emergence of desired or unwanted patterns to 
derive important system properties to be actively controlled (Fisch et al. 2010). In other scenarios, 
such as urban traffic control, the observer might use this data to learn a predictive model forecasting 
the upcoming traffic demands at intersections (Sommer et al. 2016). The observer can also detect pat-
terns or conduct clustering to find typical, abnormal or recurring system states, which can be learned 
to be avoided or maintained by the system’s controller.

The controller component is then responsible for learning specific actions in order to react to ob-
served system states. It receives an abstracted situation description from the observer (often called 
system state  at time ). Based on this system state, it consults a knowledge base which can be fixed 
and predetermined by the system designer or learned by the system itself during runtime (i. e., on-
line). The knowledge base consists of IF(system state)-THEN(action) rules which determine the most 
suitable reaction to particular system states. These actions are then translated into control signals to 
be realized by the SuOC’s effectors. Most often reinforcement learning based on Learning Classifier 
Systems (LCS) is applied here to learn an interpretable rule base which can be analyzed and enriched 
manually by human operators (Stein 2017). Thus, interpretable machine learning has been central 
to OC research from the beginning. Another task of the controller is to determine the observer’s 
observation model, which can for instance influence the frequency of state observations, as well as 
the granularity of abstraction. It can thus also affect the features included in the abstracted situation 
description what has in turn to be coped with in the controller’s rule learning or any other deci-
sion-making component (Stein and Tomforde 2021). 

It should be noted that OC agents not per default strive for full system autonomy. Development of 
such systems usually follows an incremental design process that also considers the Human-in-the-Lo-
op (Tomforde and Müller-Schloer 2014). Accordingly, the layers on top of the SuOC are commonly  
encapsulated by a collaboration layer, which provides interfaces for monitoring and goal management. 
The first interface allows the system operators (but also super-ordinate OC agents in multi-agent sys-
tem hierarchies) to inspect or supervise the system’s behavior. The latter interface allows for modifying 
the system’s goals through adjusting certain evaluation criteria that parametrize the utility function of 
the OC system. The controller has to account for such goal changes. This can be done by e. g., adapting 
its current control policy, replacing it from a set of predefined ones, or by learning entirely new ones. 
The extent of this self-adaptation capability determines the flexibility of an OC systems.  

We have delineated the description of this generic OC architecture by concentrating only on one 
adaptation layer set on top of the SuOC. However, most applications have extended this basic model 
and implemented a specific variant of it – the so-called multi-layer observer/controller architecture 
(MLOC) (Müller-Schloer and Tomforde 2017b). The most distinguishing point to mention rather short-
ly here, is that these variants employ further layers on top of the adaptation layer 1 as described 
before. Such layers serve the purpose of further system cognition, but introspectively directed, i. e., 
observing the system’s performance and intervene accordingly by triggering self-adaptations, if for 
instance performance declines are detected. Such layers are thus often called ‘reflection’ or ‘cognition’ 
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layer. In our case study as presented below, we present a specific example of such an MLOC instance 
for the agricultural use case of intelligent tractor control for secondary tillage.

Today, OC is still understood as a paradigm that aims to make the ever-increasing complexity of 
current and future interconnected computing systems manageable. Therefore, current OC research 
centers around developing principles, methods and architectures for the flexible design and robust op-
eration of technical systems embedded in various dynamic real-world contexts. As mentioned before, 
resulting OC methods are strongly nature-inspired manifest the underlying principles in algorithmic 
counterparts. The idea is that due to employing adaptivity and (controlled) self-organization into tech-
nical systems, these become able to function robustly, re-configure flexibly and act adaptively in real 
world environments (Schmeck et al. 2010). This is achieved by implementing so-called self-x proper-
ties that let these systems act in a ‘lifelike’ manner. That means that future technical systems will be 
enabled to shift decisions that traditionally had to be made by engineers at the system’s design time 
to the runtime and, thus, the responsibility of the technical systems themselves. To this end, methods 
from the broad field of classical and modern artificial intelligence (AI) and artificial life play a central 
role. For example, machine learning and metaheuristic optimization (e. g. evolutionary algorithms) 
are utilized to render OC systems continually self-learning and self-optimizing (e. g., (Tomforde et al. 
2011a). Concepts of distributed systems and swarm intelligence are being introduced to address the 
ever-increasing degree of distribution in open systems and thereby increase system’s resilience and 
dependability through implementing self-organization and self-healing properties. For instance, novel 
computational mechanisms inspired by the natural hormone system and DNA have been proposed to 
increase system dependability (e. g., (Pacher and Brinkschulte 2020). A comprehensive overview of 
algorithmic concepts and methods developed for OC can be found in Müller-Schloer et al. (2011).

Prior Work on Organic Computing in Agricultural Engineering 
Besides the various real word applications as exemplarily mentioned above, OC has also been consid-
ered in the domain of agriculture. Primarily the optimization of tractor control and management has 
been subject of research. The project was called OCOM for Organic Computing for Off-Highway Ma-
chines and applied the generic O/C architecture to optimize fuel consumption of a tractor-implement 
combination in simulation (Kautzmann et al. 2010, Wünsche et al. 2010, Mostaghim et al. 2011, 
Kautzmann et al. 2012). We consider a similar problem setting in our work but extend the previously 
done investigations by optimizing a multi-criteria utility function taking next to fuel consumption 
and area output also the observable work quality and engine utilization into account. Our approach 
makes use of an environment model (as explained in the next section) recently proposed in Boysen et 
al. (2023) which is calibrated and trained on real data collected from field experiments. This allows 
our proposed system architecture to leverage model-based machine learning allowing individual com-
ponents for continual optimization. Such an approach unfolds its potential when the system exhibits 
the self-reflection property. We discuss this in more detail in the case study section below. 

A second scenario where OC technology was applied to an agricultural problem setting is present-
ed by Mnif et al. (2007). The authors addressed the severe problem of cannibalistic poultry behavior 
in livestock farming. In an agent-based simulation study, the observable cannibalistic behavior of 
hen, i. e., attacking injured birds by flocking around them and picking them to death, has been mod-
eled. An observer component was employed to detect this self-organization behavior and calculate a 
so-called emergence fingerprint. Each time this emergence value surpasses a predefined threshold, 
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the controller could infer that an intervention is necessary. The controller could then emit a dis-
turbing signal followed by the dispersion of the attacking bird flock what overall led to an improved 
survival rate of injured hen.

Recently, another work has been published in the context of autonomous field vegetable monitor-
ing (Lüling et al. 2022). An O/C architecture with a self-reflection layer was presented which allowed 
for the online detection and elimination of knowledge gaps in a robotic monitoring system. The moni-
toring task was the instance segmentation of cabbage which yields important information of the field 
performance and expectable yield. Each time the system delivered a poor segmentation of low confi-
dence, the reflection layer detected this fault and triggered an active learning loop to rectify the seg-
mentation model in order to obtain an improved prediction the next time a similar situation occurs.

In Modak and Stein (2024), the authors present a methodology to generate artificial training data 
for intelligent weed control systems. Their approach utilizes the SAM foundation model combined 
with a stable diffusion model to synthesize images of weed-infested crop areas. It is shown conceptu-
ally, how such a generative AI pipeline can be integrated into an Organic Computing architecture in 
order to enable proactive self-improvement in the context of automated weed control.  

Looking beyond the concrete Organic Computing scope, Boubin et al. (2019) discusses challenges 
on applying autonomic computing principles to fully autonomous precision agriculture. Based on an 
autonomic computing approach, they demonstrated in simulation that the sampling rate of crop fields 
can be reduced to 40 % and less for predicting accurate yield maps, what in turn has the potential to 
decrease labor cost and energy demand in UAV-supported precision agriculture settings.

As can be seen, initial concepts and experimental studies already exist that acknowledge the suit-
ability and potential of OC and autonomic computing techniques when adopted to complex technical 
systems in the domain of agricultural engineering. With this article, we want to take a further step. 
Firstly, by abstracting from particular agricultural use cases in the following section, we intend to 
elaborate on the general suitability of OC for designing future intelligent agricultural technology. 
Afterwards in a case study considering the secondary tillage process, we build upon these conceptual 
thoughts and propose and formalize an OC-based system model for optimizing tractor control incor-
porating modern tools of AI and demonstrate the viability of our approach by reporting on empirical 
results from an initial experimental analysis.

OC Perspective on Intelligent Agricultural Technology
The fourth industrial revolution is driven by digital technology. The so-called digital transformation 
impacts all sectors of our economy and thus also primary production. The digitalization of agriculture 
promises increase in efficiency, transparency, and productivity by offering the possibility to extract 
and make use of relevant information hidden in the vastly collected data of production processes – 
even across the entire agri-food value chain (Krupitzer and Stein 2024).  

The fundamental principles of gathering data and using information to support decision making 
and optimize farming processes date back to the 1990s, when the concept of precision agriculture was 
introduced. With sensors and computing units utilized becoming increasingly smart and powerful 
in the early 2000s, higher automation of the farming processes through in-situ real-time analysis of 
the collected data have become possible, what is often referred to as smart farming. Digitalization of 
agriculture or digital agriculture expands the methods used to new digital technologies such as IoT, 
edge and cloud computing, intelligent big data analysis, and artificial intelligence but, importantly, 
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still shares the overarching goals already formulated for precision agriculture in the 1990s and was 
revised by the International Society of Precision Agriculture (ISPA 2024) just in 2024: 

“Precision Agriculture is a management strategy that gathers, processes and analyzes temporal, 
spatial and individual plant and animal data and combines it with other information to support man-
agement decisions according to estimated variability for improved resource use efficiency, productivity, 
quality, profitability and sustainability of agricultural production.”

The reader is referred to (CEMA 2017, DLG e.V. 2018, Paraforos and Griepentrog 2021) for a 
more detailed discussion on these terms and related concepts. Concrete examples of technical sys-
tems belonging to manifestations of the sometimes interchangeably used terms ‘smart’ and ‘digital’ 
agriculture comprise: Camera-steered weeding machines, either in form of tractor implements or 
self-propelled mobile robots; smart implements that adjust their controllable parameters (e. g., work-
ing depth or application rate) based on real-time sensory; multi-vehicle systems that automatically 
navigate fields (e. g., a fleet of machines following a leader) or detect a trailer’s fill status to automat-
ically control the off-loading from forage harvester; or automated steering systems that not only use 
GNSS-RTK signals but also sensory information to obtain a fault-tolerant row navigation. We only 
give some examples here and restrict ourselves to technical systems in form of complex machinery, 
thereby neglecting purely software-based digital solutions (such as smartphone apps detecting health 
status of crops). These technologies and others are often termed ‘smart’ sometimes even ‘intelligent’, 
for the latter of which in the opinion of the authors the criteria are usually not satisfied (see definition 
of Intelligent Agricultural Technology below).  

A current observable trend however is the increasing appearance of mobile robots for automating 
certain steps of agricultural production processes or performing processes in a fully autonomous 
manner (Vougioukas 2019). Enhancing these machines’ degree of autonomy increasingly demands 
for the utilization of AI in order to maintain reasonable levels of robustness and reliability (Bechar 
and Vigneault 2016). Being able to fully automate entire agricultural production processes by means 
of autonomously operating machines can contribute to alleviating present challenges in agriculture 
such as labor shortage or the strong need for adaptivity due to volatile environmental conditions.

Today’s commercially available robotic applications for crop production concentrate on weed con-
trol, seeding, unmanned aerial vehicles (UAVs) for e. g., monitoring and mapping plant stand condi-
tions, as well as driverless automation of field navigation (Vougioukas 2019, Fountas et al. 2020). 
Highly autonomous indoor farming is another application area of robotic solutions. Looking in the 
livestock farming domain, milking robots, feed pushers, barn cleaners, belong to the most available 
solutions. Since a more detailed discussion of these topics would fall beyond the scope of this paper, 
we refer the interested reader to recent surveys on the state of automation and digital technologies in 
livestock and indoor farming applications (Groher et al. 2020, Ragaveena et al. 2021). 

Research on the other side, proposes tremendously more applications for autonomous robots in 
agriculture. To name only a few, potential applications ranging from fully autonomous robotic sys-
tems for field and green-house vegetable farming, hybrid swarms of UAVs and small ground robots 
for detecting and controlling weed, to field swarms comprising heavy-weight interoperable and mod-
ular entities (driverless tractors) that collectively navigate and manage fields (Herlitzius et al. 2021, 
Albiero et al. 2022). The question to what extent currently available solutions and concepts from the 
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scientific literature possess intelligence, however, is not sufficiently discussed yet. Intelligence is often 
associated with cognitive capabilities of naturally intelligent beings such as humans (Boden 2018, 
Russell et al. 2022). Adopting these for the definition of artificial technical systems is however not 
always straightforward.

For the purpose of this paper, we introduce the concept of Intelligent Agricultural Technology (IAT). 
The term IAT is not established yet. We therefore provide a first attempt for its definition along with 
some classification criteria which we deem necessary to qualify agricultural technology as ‘intelli-
gent’: 

 “IAT describes technical systems designed for the purpose of performing and optimizing agricultural 
measures within agricultural processes without the immediate and permanent need for human inter-
vention, but the interfaces to allow for farmer monitoring and control at any time. IAT systems are thus 
autonomous systems, which embed one or more constituent AI programs (agents) via computational units 
with mechatronic (hardware) components. The embedded AI agents enable the resulting cyber-physical 
system to continually perceive its environments (e. g., soil conditions, vegetation status) through sensors 
and other information sources (e. g., weather forecasts), to self-reflect on the current system performance, 
and to react through immediate self-adaptations and planning of the best next actions to optimize the sys-
tem’s utility (e. g., area output, energy efficiency, field efficiency) what captures the goals as set by human 
operators or superordinate systems. Actions can be either internal adaptations of machine parameters 
(e. g., working speed, engine speed), signals to control effectors that modify the environment (e. g., har-
rows, hoes, grippers for fruit harvest), or recommendations to the operators.”

Following our definition of IAT above, we qualify autonomous agricultural systems, such as mobile 
robots, only as ‘intelligent’ if they have the capability to decide for and plan necessary actions to take 
by themselves. Furthermore, IAT systems have to show a certain degree of reflective capacity about 
their own performance (or system utility) what allows them to detect disturbances during the process 
and autonomously trigger measures to recover from deteriorated system states (robustness). Despite 
spatio-temporal variability in their environment (e. g., different soil conditions, nutrient availability, 
vegetation stages), IAT can deal with complex, contradicting and multiple performance criteria and 
through their adaptivity can continually maintain or even self-optimize toward a high-utility machine 
behavior, e. g., in terms of working quality, resource efficiency, as well as other economic or ecological 
objectives. Furthermore, due to their continual self-improvement, IAT can deal with abruptly or grad-
ually changing goals as set by humans or superordinate systems (flexibility).

As an example, we would qualify a mobile agricultural robot as IAT, if it fully autonomously nav-
igating fields, planning and performing its assigned agricultural tasks, and, in the process being 
capable of adapting to local conditions in the surrounding environment or circumventing unexpected 
disturbing objects by using AI technology for perception, manipulation and reflection. On the other 
hand, an unmanned aerial vehicle (UAV) system flying a preplanned route over a field and using an 
isolated deep learning-based AI model to detect weeds, would, according to our definition above, not be 
deemed an IAT system – but nevertheless a highly important tool of smart agriculture.

By means of putting an explicit emphasis on the intelligence qualities (e. g., reflective capacity, 
self-learning and decision-making capabilities) we demand of such systems to realize the claimed 
properties of adaptivity, robustness, and flexibility, we attempt to delineate our proposed concept of 



agricultural engineering.eu 80(1) 82

IAT from other terms in the literature as discussed before. Additionally, we note that a new journal 
entitled ‘Smart Agricultural Technology’ had its first issue in 2021 and covers applications of smart 
and digital technology, including artificial intelligence use, to all agricultural sectors. Despite of hav-
ing similar names, we argue that the delineation also applies analogously here, but still feel that the 
journal’s broader scope clearly encompasses future works on IAT.

Suitability of OC for IAT 
Having defined the terms OC and IAT in more detail, we now briefly recapitulate on their common 
challenges. In Table 1 we depict a brief comparison of OC’s envisioned evolution of modern and soon 
observable computing systems in the left column (cf. also the ‘Complexity challenge’, as elaborat-
ed in Müller-Schloer and Tomforde (2017d)) and developments and challenges faced by modern 
agricultural engineering. Please note that this juxtaposition is intended to provide a sense how the 
developments envisioned by OC and the current and soon increasingly observable trends in smart ag-
ricultural technology align with each other. The aim is not to be fully comprehensive or surveying the 
latest advancements. For more insights on this topic, the interested reader is referred to e. g., (CEMA 
2017, Paraforos and Griepentrog 2021, Bökle et al. 2022, Fountas et al. 2024).

Table 1: Comparison of OC’s insights on future computing systems (left) to current and future agricultural engineer-
ing challenges (right).

Organic Computing postulates… Agricultural Engineering copes with…

Rising complexity through
 � decreasing size of computing devices
 � increasing connectivity
 � increasing computing capacity (Moore’s law)

IoT devices and IT connected from Edge to Cloud
 � Smart sensors and connected real-time capable com-

puting units on machines
 � Digital software services as part of emerging digital 

ecosystems (platforms, federated services in data 
spaces)

 � Telemetry and telematics systems, mobile and ad-hoc 
wireless networks (e. g., 5G, LoRaWAN)

 � AI-capable rugged computers on land machines, mart-
phones, tablet computers, farm-level edge servers, 
access to powerful cloud resources

Impossibility of central administration
 � Open, interconnected distributed systems
 � Vast amounts and velocity of both structured and 

unstructured data 
 � Demand for data security and privacy

Digitalized farms being decentralized IT systems
 � Various proprietary systems by OEMs
 � Limited interoperability due to lack of normed inter-

faces for secure and sovereign data exchange 
 � Digital pervasion through several technological scales 

from machine, farm- and inter-farm to virtual cloud 
level 

Challenge of open, dynamic environments
 � Real world environments often are complex adaptive 

systems 
 � Competing objectives from social, economic and 

ecological dimensions
 � Non-stationarity due to adaptation and interaction of 

changing system entities and subsystems as well as 
natural stochasticity 

 � Results in high requirements for dependability and 
trustworthiness of autonomous behavior of self-or-
ganizing and self-adaptive systems

Highly complex agricultural domain 
 � Both, agricultural objects (crops, animals) and 

environment (fields, barns) are dynamic and hardly 
predictable

 � Agriculture can be understood as a highly decentral-
ized, social-ecological and social-technical system

 � Spatio-temporal variability and heterogeneity (e. g., 
plants / soil)

 � Enormous complexity for autonomous machines and 
robots which need to comply with machine regula-
tions and strict functional safety requirements 

 � Lack of trust in new digital technologies, especially in 
AI, and uncertainty about reliability of such systems
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The above table leads to the hypothesis that future agricultural technology will evolve into sys-
tems of systems that manifest on different technological scales which all make strong use of modern 
information technology and AI in order to deal with the increasing system complexity. Accordingly, 
IAT systems built by leveraging modern systems engineering approaches which address the already 
persistent overlap of classical machine engineering, electronics and computer sciences constitute a 
key requirement for keeping pace with the tremendous developments fueled by AI and other new 
digital technologies as expected in the upcoming decades.

We postulate that OC constitutes a viable approach for designing IAT systems, allowing them to 
master the increasing system complexity by building upon the innate ‘self-x properties by design’ 
principle of OC. To make a first step to substantiate our claim, we proceed with adopting an OC ap-
proach to design an IAT system for a particular use case in crop production – the optimization of a 
secondary tillage process (Köller and Hensel 2019). Our case study comprises the definition of a 
concrete system model as well as a formalization into mathematical descriptions which in turn allow 
for the application and evaluation of AI methods. We demonstrate how the targeted IAT system can be 
framed using a multi-layer variant of the generic O/C system architecture from the OC toolbox. To this 
end, we flesh out most relevant components with concrete machine learning techniques. In this study 
we focus on deep reinforcement learning (Mnih et al. 2015) to allow for reactive machine parameter 
adaptation combined with planning through integrating a deep learning-based environment model. 
Lastly, we evaluate our IAT system approach in silico based on data collected from in situ field trials 
and compare our AI-based solution against a common practice baseline.

Case Study: OC-Optimized Secondary Tillage
Primary tillage describes the process of mixing and/or burying organic residues into the soil of 
agricultural fields while also removing soil compaction (Guérif et al. 2001). It is followed by second-
ary tillage to prepare the seedbed for seeding. In practice, secondary tillage is often combined with 
seeding by utilizing, e. g., in our case a power harrow-seeding combination. The preparation of the 
seedbed and the resulting aggregate sizes are essential for crop establishment which includes the 
germination and early growth stages (Braunack and Dexter 1989). Secondary tillage is performed 
by mechanically treating the soil to crush soil clods, provide good germination conditions and level 
the soil surface. The way secondary tillage is performed has an impact on the soil aggregate distribu-
tion and therefore the seedbed quality (Adam and Erbach 1992). While the seedbed quality is often 
measured by the mean weighted diameter (Sandri et al. 1998, Riegler-Nurscher et al. 2020), this 
measurement method requires manual effort for soil sampling and sieving and is thus not useable for 
online system control. Riegler-Nurscher et al. (2020) estimated the seedbed quality to control their 
machine by calculating the roughness coefficient utilizing height measurements of the soil surface. 
They found a correlation of the roughness coefficient to the mean weighted diameter which describes 
the distribution of soil aggregates. Following their findings, the roughness coefficient is used in this 
case study to quantify the tillage quality.

System Model
Besides the seedbed quality (SQ) (in mm) that we measure by the roughness coefficient, other per-
formance metrics observable during secondary tillage process are the fuel consumption (FC) (in l/
ha) and the area output (AO) (in ha/h). During secondary tillage, the operator of the machine needs 
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to observe their working environment by assessing current soil conditions in front and in the back 
of the machine, i. e., after the tillage operation. To allow for a continual parameter adaptation, these 
assessments need to be put in relation to the current machine configuration (e. g., working speed), the 
machines overall capabilities and the targets of the tillage process (i. e., the performance metrics as 
introduced above). The interdependent nature of the performance metrics renders the performance 
optimization an intricate problem. In our case, the soil conditions are sensed by two stereo cameras 
(SceneScan Pro-system of nerian vision technologies) and an Emlid Reach RS+ each attached with 
aluminum profiles in the front and in the back of the machine with a distance of 10.69 m between 
them. In Figure 2, we show the setup consisting of a Kverneland e-drill compact which is attached to 
a Claas Arion 660 while performing secondary tillage in the field. 

These cameras provide both RGB as well as depth information of the soil surface in the front imgf 
and in the back imgb displaying a square of about 0.5 m × 0.5 m with a spatial resolution of about 
1 mm per pixel. The depth information is used to calculate the according two soil surface roughness 
coefficients rcf, rcb. Further information of the current state of the environment is gathered by reading 
telemetry data from the CAN- and ISOBUS of the tractor. This includes information on the current 
working speed vw (in m/s), engine speed ne (in n/min), PTO (power take off) speed nPTO (in n/min), 
engine torque utilization Me (in %) and engine fuel rate fre (in l/h). Furthermore, GNSS-RTK antennas 
are used to spatially match the positions of images taken in front of and behind the machine (Fig-
ure 3), to calculate the slope of the field (in °) and to calculate GNSS-corrected working speed to take 
slip into account. For each image and position taken in front of the tractor, images from the back of the 
tractor are matched by using the constant distance of 10.69 m between the front and the back cam-
eras. This is possible with the constraint that the tractor is always driving in a straight line and data-
points at the beginning and at the end of a lane are discarded. Additionally, the manually set depth of 
the power harrow phd is included in the current state of the machine. All information is streamed to 
a computing unit which is mounted in the cabin of the tractor. The computing unit comprises an Intel 
Skylake i5-6500TE, an NVIDIA GeForce GTX 1050TI and 32 GB RAM.

Figure 2: Kverneland e-drill compact attached to a Claas Arion 660 with a computer mounted in the cabin of the trac-
tor and stereo cameras as well as GNSS antennas in the front and in the back of the machine (© Stein and Boysen)
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Based on the generic observer/controller architecture as discussed before, we present a multi-lev-
el variant of this model (Müller-Schloer and Tomforde 2017b) dedicated for controlling the sec-
ondary tillage process in Figure 4. The technical system of a tractor seeding combination determines 
the SuOC. By means of wrapping it with the MLOC architecture as depicted in Figure 4, we render 
our technical system an intelligent system, more precisely an IAT. This system design allows the 
embedding of an intelligent control agent, i. e., AI software, to intelligently choose actions for system 
adaptation and also to self-reflect on the system performance. 

Figure 3: Schematic of the tractor-implement with the positions of the stereo cameras in the front and the back of 
the machine. An GNSS-RTK antenna is mounted on top of each camera adapted from Boysen et al. (2023)

Figure 4: Multi-level Observer/ Controller (MLOC) architecture for secondary tillage control adapted from 
Müller-Schloer and Tomforde (2017b); arrows between the components indicate the data flow and functional rela-
tionships which are derived from the originating components and used in the receiving components
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The first layer of the architecture is for establishing a reactive adaptation loop. The observer part 
of this layer is responsible to monitor raw sensor data from the tractor-implement combination (SuOC 
at Layer 0). Our architecture includes an interface to receive further information from the neighbor-
hood, which could be comprised of machines working at the same time on the same field, or even 
from previous process steps, e. g., a tractor performing primary tillage and measuring soil conditions. 
The observer then preprocesses the incoming sensor data and further information utilizing the ROS2 
middleware (Macenski et al. 2022). Therefore, the CAN- and ISOBUS of the tractor are connected via 
CAN-Interface for USB (PEAK-CAN) to an onboard rugged computing unit mounted in the cabin of the 
tractor. The preprocessing step includes parsing selected information (vw, ne , nPTO, Me, fre) which 
is important for the later defined state vector from CAN- and ISOBUS using the messages defined in 
J1939 and ISO 11783. Additionally, this step includes calculation of GNSS-speed and slope, detection 
of low-quality stereo images, georeferencing the captured images as described above and computing 
averages for data with high variance (e. g., image information for roughness coefficient calculation 
over the displayed window in Figure 3). During this step, information from past system observations 
(history) is supplied. Next, the preprocessed data is further analyzed to derive important information 
for building a situation representation describing the current system state s. This includes the calcu-
lation of the soil surface roughness coefficients and the current working state of the machine.

After this analysis, the complete state is available, passed to the controller of the reactive adapta-
tion layer and stored in the history. The state vector s is defined according to equation 1: 1 

� � �𝑖𝑖𝑖𝑖𝑖𝑖� , 𝑟𝑟𝑟𝑟� , 𝑟𝑟𝑟𝑟� , 𝑣𝑣� , 𝑛𝑛� , 𝑛𝑛���, 𝑝𝑝𝑝� , 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠, 𝑀𝑀� , 𝑓𝑓𝑟𝑟�� ∈ 𝑆𝑆, 2 

 3 

 (Eq. 1)

where S determines the system’s state space. Within the controller of the reactive layer, the state 
is evaluated by a policy (or adaptation strategy) that determines the next action to take. The selected 
action serves as a control signal to the tractor. In our case-study, the action determines a necessary 
adaptation of the machine’s working speed, since it has been found to be the most important machine 
configuration of the tractor during secondary tillage as it has a large impact on all performance met-
rics (Varani et al. 2023). Depending on the learning problem formalization there are several options 
to define the action space . The choice of the action space has an important impact on the selection 
of appropriate machine learning methods. Options include a discrete action space with predefined 
working speeds or a continuous action space defined by an interval. In our case, we decided to define 
a discrete action space A with action values a specifying to increase (+Δvw) or decrease (-Δvw) the 
working speed by a specified delta (Δvw) or to keep (+0) the current working speed: 1 

𝒂𝒂 ∈ 𝒂𝒂 𝒂 �Δ𝑣𝑣�, �Δ𝑣𝑣� , 0� 2 

 3 

 (Eq. 2)

It is assumed that the machine should operate between a minimum working speed vwmin and a 
maximum working speed vwmax. To keep the machine parameter within a viable range, we restrict the 
adaptation by applying the following rule:

𝑣𝑣� ← �
𝑣𝑣����             𝑖𝑖𝑓𝑓 �𝑣𝑣� � 𝒂𝒂� � 𝑣𝑣����
𝑣𝑣����            𝑖𝑖𝑓𝑓 �𝑣𝑣� � 𝒂𝒂� � 𝑣𝑣����
𝑣𝑣� � 𝒂𝒂  𝑠𝑠𝑜𝑜𝑝𝑠𝑠𝑟𝑟𝑜𝑜𝑖𝑖𝑠𝑠𝑠𝑠                         

 1 

 2 

 (Eq. 3)
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The roughness coefficient in the back of the machine rcb, the engine torque utilization Me and the 
engine fuel rate fre will be predicted by a model of the environment which allows modification of the 
machine configuration including vw (Boysen et al. 2023). Other components of the state vector are 
either read from the dataset during model training or will be perceived from the environment during 
application (imgf , rcf , ne , nPTO, phd, slope). To allow the tractor to have sufficient time to accelerate to 
the targeted working speed, the working speed delta Δvw and the interval of control signals λa (in s) 
needs to be appropriately set to allow the tractor to adapt regularly. For this study Δvw and λa are 
fixated, but an adaptation of these parameters could be handled by an adaptive observation model.

Besides selecting an action, the controller also evaluates the current system state s to retrieve a 
measure of system utility U(s). This evaluation includes the calculation of the performance metrics 
AO, FC and SQ. SQ is directly accessible from the state vector through the soil surface roughness 
coefficient as measured behind the machine (rcb). In our case the target was to minimize rcb since 
the experimental fields were ploughed and not further tilled afterwards. In other scenarios a target 
rcb as in Riegler-Nurscher et al. (2020) can be used instead. The area output and fuel consumption 
are calculated through the working speed, the working width (3 m) and the engine fuel rate of the 
machine. Accordingly, we define: 1 

𝑆𝑆� � 𝑟𝑟𝑟𝑟�;      𝒂𝒂𝐴𝐴 � 𝑣𝑣� ∗ 3 𝑖𝑖 ∗ 3600 𝑠𝑠
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10,000 𝑖𝑖� ;      �� � 𝑓𝑓𝑟𝑟�
𝒂𝒂𝐴𝐴 2 

 3 

 (Eq. 4)

These metrics are then normalized in the controller component, merged with the system state 
and stored in the history buffer and thereby become accessible to the operator via the monitoring 
interface in the MLOC’s collaboration layer. The minimum and maximum values required for the nor-
malization are in case of the area output calculated based on vwmin and vwmax. And for the roughness 
coefficient rcb and the engine fuel rate fr) the normalization is empirically based on the 1st and 99th 
percentiles of an already recorded dataset (Boysen et al. 2023). The normalized performance metrics 
are denoted by a hat above the symbol. The resulting system utility of a current state, U(s) ∈ [0,1], can 
be calculated by the weighted sum of the normalized performance metrics:
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 2 

 (Eq. 5)

Since in our approach we want to maximize overall system utility, the normalized performance 
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 2 

 need to be inverted in the above formula. We note that other methods to approach 
such multi-criteria optimization problems apart from this linear combination of evaluation criteria 
can be applied. Research on this fall beyond the scope of this work and is thus left for future research 
efforts. 

The reflection layer (layer 2) of the MLOC allows the agent to self-reflect on the system’s perfor-
mance. In our approach, the layer 2 observer has access to past experiences and to an environment 
model, allowing the system to continually improve the adaptation behavior in the reactive adaptation 
layer’s controller. Such an environment model has been developed in Boysen et al. (2023) and it 
constitutes a deep learning-based predictive model and is an essential component of this layer in 
our architecture. It is capable of predicting the response of the soil-machine interaction, i. e., fre , 
Me and rcb , for various context information (imgf , rcf , slope) as well as machine configurations (vw, 
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ne , nPTO , phd). The model was trained on a massive data set (n > 170,000) collected during in situ 
measurements across various real fields. For more details, we refer the reader to Boysen et al. (2023). 
The environment model is used in both the observer and controller part of the reflection layer. In the 
layer 2 controller, it is used to learn and continually improve a policy offline (i. e., without directly 
affecting the layer 1 reactive adaptation strategy) in a model-based reinforcement learning approach. 
This policy will map an action a to each possible state s. In our case study, we will exemplary elab-
orate on how to learn such a policy and show simulation results in the following sections. Since the 
environment model only approximates the soil-machine response based on previously seen data, it is 
expectable that during the intelligent system’s runtime completely different, so far unseen situations 
occur. If the system has no or hardly any experience with such an observed situation, we speak of 
knowledge gaps (Stein et al. 2018). The observer part of the reflection layer is responsible to detect 
such knowledge gaps by continuously comparing the predicted model response with the actually 
measured values that can only be obtained after the adaptation decision as done in layer 1. Identified 
knowledge gaps can then be counteracted by further fine-tuning the environment model specifically 
to the observed local situations and subsequently improving the agent’s control policies. The detec-
tion of the knowledge gaps and the fine-tuning of the environment model are beyond the scope and 
are part of future work.

Furthermore, the aforementioned comparison of the agent’s predictions with the actually ob-
served real-world conditions can be used to derive a confidence score of the agent. Such a measure 
of uncertainty can be used to switch between different models of the environment, detect the afore-
mentioned knowledge gaps or as a value source of information for the farmer which can be monitored 
through the human-machine-interfaces in the collaboration layer. Layer 3 also provides the farmer 
with the possibility to adjust goals by e. g., modifying the importance weights in the utility function 
or directly choose predefined policies based on a priori and tacit knowledge. Additionally, over the 
generically defined neighborhood interface, the agent can exchange data and information with other 
agents (Oroojlooy and Hajinezhad 2023). In our scenario, additional information could be either 
exchanged with other machines operating simultaneously on large fields (cf. the concept of field 
swarm technology in Herlitzius et al. (2021)). Or across process steps, i. e., sensor information such 
as draught force measurements as an indicator of soil compactness measured by machines during 
the primary tillage activity.

Markov Decision Process for Secondary Tillage Optimization
Based on the detailed system model, we proceed by formalizing the learning problem following the 
notional approaches of Sutton and Barto (2018) and Moerland et al. (2023). Performing secondary 
tillage on a field can be formalized as a sequential decision problem when concentrating only on 
the in-lane phase. In our system model, each future state is only dependent on the present state and 
therefore the Markov property is assumed to be fulfilled as well as full observability of the system 
state. Based on our defined state space S of the system, the action space A and the utility function 
U(s), we formulate the system’s learning problem as follows: 

Find a policy π that for any observed system state s (soil roughness, machine parameters, etc.) 
selects the best action a (here working speed adaptations) to maximize the overall system utility 
U(s) (here optimizing area output, seedbed quality and fuel consumption) by maximizing estimated 
discounted future rewards.
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The sequential decision problem is formalized as a Markov decision process (MDP) M = {S, A, T, R, γ}. 
An MDP consists of a state space S, an action space A, a transition function T : S × A  S, T(s, a) ↦ s’ 
which returns the succeeding state s’ for action a taken in state s, and the reward function R(s, a, s’) 
which returns the scalar reward r ∈ ℝ for the transition from state s performing action a and reaching 
the succeeding state s’. The parameter γ ∈ [0,1] sets the discount for future rewards. In reinforcement 
learning, the target is to learn a policy π(a|s) to maximize the expected discounted reward while per-
forming a trace of length K through the so-called environment. In this work, we define a trace as one 
lane in which secondary tillage is performed. Thus, an entire field constitutes many traces of different 
lengths and therefore different K. For value-based reinforcement learning approaches for control prob-
lems, Qπ(s,a) is the state-action value for the expected cumulative discounted reward following policy 
π under the transition function T at time t (Sutton and Barto 2018):
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The state-action value of state s while performing action a given the transition function T is recur-
sively defined by the sum of the current reward and the discounted expected state-action value of the 
next state s’ taking the next action a’ due to following policy π. This relationship between state-action 
values can be expressed through the Bellman equation (Moerland et al. 2023). The target is to find 
an optimal policy  that maximizes the expected state-action value (Moerland et al. 2023):
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One way to find the optimal policy π* is by estimating the Q-values through temporal difference 
learning where the intelligent agent updates the Q-estimates after each state transition using the 
reward to calculate a weighted average between the new and the old estimate. One approach is called 
Q-learning (Watkins and Dayan 1992), where the temporal difference error TD can be calculated as 
follows (Sutton and Barto 2018):
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In offline reinforcement learning algorithms, a static dataset of transitions is collected in the target 
environment Denv = {(s, a, r, s’)} and used to train the policy π. Following our model as introduced 
above, in this work the environment is considered to be the field and soil conditions plus the ma-
chines working conditions.  Without a model of the environment, in offline reinforcement learning 
the training of the agent is limited to the actions actually performed and recorded during data collec-
tion, in our case in real field trials. In model-based reinforcement learning the dataset is further uti-
lized to train a parameterized transition function  of the simulated MDP 𝑀𝑀𝑀𝑀�   = �𝑆𝑆𝑆𝑆, 𝐴𝐴𝐴𝐴, 𝑇𝑇𝑇𝑇� , 𝑅𝑅𝑅𝑅, 𝛾𝛾𝛾𝛾� 

 

 

 which 
allows the agent to learn from a broader set of system states that can differ from the behavior as re-
corded in the real world (and used for offline training). In the learnt MDP,  𝑇𝑇𝑇𝑇�Ψ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  can be used to de-
rive the next state and the reward of performed transitions (Yu et al. 2020). The rewards gained from 
𝑀𝑀𝑀𝑀�   should be pessimistic to avoid the policy purely exploiting the 𝑇𝑇𝑇𝑇�Ψ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   itself being a learned model. 
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To account for this, a penalty can be added to the reward function for the magnitude of uncertainty in 
transitions (Kidambi et al. 2020). This can be done by either adding an uncertainty penalty in the 
form of a reward scaling factor (Yu et al. 2020) or by using an uncertainty threshold and applying a 
penalty when exceeding this threshold (Kidambi et al. 2020). In many cases, it is useful to learn an 
ensemble of transition functions to infer the certainty of the predictions by the variance of the ensem-
ble predictions. An ensemble of environment models is created by training multiple soil-machine re-
sponse models (Boysen et al. 2023) on different subsets of training data with different random initial-
izations. This also allows to draw the next state from a distribution of states to accommodate for the 
stochasticity of e. g. real-world scenarios (Nix and Weigend 1994, Lakshminarayanan et al. 2017). 
The transition to the next state is drawn by sampling from a normal distribution generated by the 
mean value and the variance of the ensemble predictions scaled by the hyperparameter κs, i. e., 

 𝜅𝜅�, i.e., ��~����� , 𝜅𝜅�𝜎𝜎���  1 . The uncertainty measure u(s,a) of the prediction is determined by the standard de-
viation of the ensemble predictions multiplied by a scaling factor κu. 
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 (Eq. 9)

In our case, we trained an ensemble of N = 10 environment models Ψenv on our dataset Denv with 
about 172,000 datapoints using supervised learning. These environment models serve the purpose 
of a transition function for the part of the state vector that would change as a consequence 
of an adaptation in the machine configuration. The training of the environment model ensemble uses 
different training seeds and therefore different splits of training and validation data as well as (partly) 
different initial parameters in the neural network architecture for each model. For more details of the 
training process we refer to our recent previous work on the soil-machine response model (Boysen et 
al. 2023). More specifically, the environment models each predict the resulting engine fuel rate fre, 
engine torque utilization Me and the soil surface roughness in the back of the machine rcb for the 
changed machine configuration as adapted by the reinforcement learning agent during training. By 
following this model-based approach, we allow the agent to explore much more state possibilities 
during simulation as are available in the data for offline training. The rest of the state, in our case, the 
working speed vw in the resulting state s’ is directly determined by a and s when Me ≤ Memax

, other-
wise it is reduced until Me ≤ Memax

. Most of the other parts of the state vector (imgf , rcf , ne , nPTO , phd , 
slope) are loaded from the dataset during the model-based training and simulation.

In addition to that, the model needs to identify and penalize invalid actions. In our scenario, in-
valid actions could occur e. g., due to exceeding maximum engine torque utilization or moving out of 
speed boundaries. We use a negative penalty scalar Φ for that. Therefore, we formalize our reward  
as follows: In case all predefined boundaries are met, the normalized utility of the current state is 
returned as payoff. Otherwise, the penalty scalar is returned in case of exceeding an engine torque 
utilization threshold Memax

 or resulting working speeds  outside the valid interval [vwmin, vwmax]. In 
both cases, the returned quantities are scaled using the truncated inverse of the uncertainty factor as 
defined above. More formally the reward function is defined according to equation 10:

𝑇𝑇𝑇𝑇�Ψ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
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𝑟𝑟 � max�0, 1 � 𝑢𝑢��, 𝒂𝒂�� ∗ �𝑈𝑈��� 𝑖𝑖𝑓𝑓 𝑣𝑣𝑎𝑎𝑠𝑠𝑖𝑖𝑣𝑣
Φ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  1 

 2 

 (Eq. 10)

For continuous state spaces (as in our real-world tillage use case) classical Q-Learning is not fea-
sible due to its tabular mapping of state-action values. Therefore, we use Deep Q Networks (DQN) 
to approximate the Q-values of state-action pairs (Mnih et al. 2015). During training the agent will 
gather experiences by rolling out traces of the modelled MDP. In our setting, these traces comprise 
one tilled row. These experiences are stored in a replay memory buffer Drm of size Nrm . Mini-batches 
of size Nb are sampled from this experience buffer to update the deep neural network-based policy 
models. In this approach, two deep neural networks are used: (1) a policy network (denoted θ) that 
is used during the loss optimization through backpropagation and (2) a target network θ− that is ini-
tialized with the same weight parameters as the policy network (Mnih et al. 2015) and receives a soft 
update (weighted by τ) after each step as in Lillicrap et al. (2015). Both extensions to the standard 
Q-learning approach allow for a smoother and non-diverging learning process – for more detail of the 
mathematical reasons, the reader is referred to the original source (Lillicrap et al. 2015, Mnih et 
al. 2015). The policy network is updated to minimize the Huber loss HL (Huber 1992) which is less 
sensitive to outliers compared to standard squared error (or L2) loss and also calculated over the tem-
poral difference TD (see TD calculation above) obtained through the target network and the received 
reward (Mnih et al. 2015):
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 (Eq. 11)

By minimizing this loss function, we obtain a deep neural network-based estimator for the Q-val-
ues of all possible actions from our discrete action space. Subsequent to training completion a greedy 
policy then maximizes over the Q-value estimates, i. e., 𝜋𝜋 � max� ���, 𝒂𝒂; 𝜃𝜃� 1 . During training, an ex-
ploring learning scheme such as ϵ-greedy is chosen that chooses random actions with a probability of 
ϵ in every update step (potentially decaying this ϵ probability in the course of learning). 

Integrating this learning approach into our MLOC system architecture for secondary tillage, such 
trained policies are added to the policy database on layer 2 and used in the action selector component 
in the layer 1 controller. Through the use of the environment model Ψenv, the training of better pol-
icies can continue on the reflection layer 2. This can happen either reactively as a consequence of a 
detected knowledge gap, or rather proactively by continually simulating new situations which are not 
well covered in the system state history. 

Simulation experiments
In the following case study, we want to demonstrate the most crucial part of our IAT system archi-
tecture which utilizes the soil-machine response environment model as introduced in Boysen et al. 
(2023) for training a reinforcement learning agent to control the working speed vw of the tractor-im-
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plement combination. We conduct the following study using in silico experiments based on a vast 
amount of real data collected in numerous field trials.

Accordingly, we act in the reflection layer of the proposed MLOC architecture where the RL-based 
control agent is trained. For the simulation experiments of our case study, the dataset as introduced 
in Boysen et al. (2023) consists of approximately 172,000 datapoints including 15 fields and a test 
field that has neither been used for the training of the environment model nor will be seen during 
the training of the DQN agent. This hold out field will be used for the validation part of this study. 
The simulated controller at layer 1 utilizing a DQN agent is asked to choose an action in each step of 
the simulation while the environment model and the dataset will serve to realistically replay state 
transition to the next state according to the action and previous state.

In our experiments, the optimization of the policy network is conducted after each step (state tran-
sition) followed by a soft update of the target network with factor τ = 0.005. During training, the ac-
tions are selected using ϵ-greedy policy with decay, i. e., either greedily by the policy network or at 
random with a chance of ϵ. During training we repeat every field in the dataset for ten times (exclud-
ing the holdout test field). ϵ decreases by � � ������ ∗ 𝑠𝑠��∗�∗ �����

����� �����  1 with ϵstart = 0.9 ; ϵend = 0.05 to 
reach ϵend at around halfway through training. Each field is divided into the single lanes and each of 
the lanes is denoted as a trace with different lengths (i. e., number of steps). Preliminary experiments 
determined three most important hyperparameters for which we conducted hyperparameter optimi-
zation using grid search. The search space includes α ∈ {10−3; 10−4; 10−5}, γ ∈ {0.1; 0.5; 0.9} and 
αdecay ∈ {0.2; 0.5; 1.0}. The weights in the combined utility function are set to β1 = 0.5, β2 = 0.25, 
β3 = 0.25. This reflects the observations in our data that during secondary tillage both fuel consump-
tion and area output can be improved through an increased working speed as also found by Kautz-
mann et al. (2012). Therefore, the seedbed quality evaluation criterion is weighted with 0.5 while the 
other targets are weighted with 0.25 each. Since the reward is a normalized value in the interval [0,1], 
the penalty is set to −0.5 to make sure the agent learns to perform valid actions. Further hyperparam-
eters are set according to literature (Nb = 32 (Mnih et at. 2015) or if not applicable by preliminary 
studies as follows: κu = 1.0; κs= 0.1; Nrm = 1024.

The shared architecture of the policy network and the target network consists of four linear fully 
connected layers with batch normalization and ReLU activation function. Only the output layer which 
is predicting the Q-values for each action is neither normalized nor activated and inhabits three 
neurons according to the magnitude of the action space. The input size of the first layer corresponds 
to the size of a state vector s and is 2057.This flattened layer input size results from the length of 
the encoded input image representation from the environment model (size 2048) and the other nine 
components of the state vector s (size 9). The output size of the first layer is 2054 and the input and 
output size of the following two layers is 1024 while the last layer has an output size of three, i. e., the 
magnitude of the action space in our setting.

During the evaluation, the agent selects an action in an interval λa of three seconds (λa = 3s) to 
simulate a realistic frequency in which the tractor can be controlled assuming usual working speeds 
between 1 and 3 m/s. The policy network is fed with a batch of states collected over the interval λa 
to receive the Q-values of the batch. To accommodate for equal weighting of the states, the softmax 
function is applied over the Q-values of the actions of each state in the batch. The final action is 
then determined by maximizing over the mean Q-values activated by the softmax function. This has 
the advantage that more states can be included to determine the action during large intervals, e. g., 
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λa = 3s. Alternatively, the interval of state observation could be adjusted to exactly match λa which 
would result in a single state mapped directly to a single action through the usual maximization step 
over the Q-values output by the policy network. In the real world, this approach is constrained by a 
time window in which the action needs to be calculated and target speeds needs to be reached before 
the soil surface captured on the RGB-D image in front of the tractor will reach the power harrow in 
the back of the machine.

In Figure 5, the learning progress of the DQN agents’ training is depicted. We trained 10 DQN 
agents offline, which are initialized with different random seeds (i. e., we conducted 10 experiment 
repetitions) and let each agent learn for 10 epochs over the training dataset. All agents are trained 
with the best hyperparameters as found by the hyperparameter optimization experiment. The four 
plots show the development of the constituent average reward, as well as of the reward components 
area output, fuel consumption and roughness coefficient over the ten epochs through the training 
data. The average is calculated for each reward and a single agent. For each epoch, box plots indicate 
the distribution among the ten repetitions of agent training, with the orange line depicting the me-
dian as usual. Mean values with standard deviation for the different hyperparameter configurations 
are reported in Table 2 below. As formalized above, the agent’s learnable parameters (i. e., the weights 
of the policy and target networks θ and θ−) are optimized by gradient descent to minimize the tem-
poral difference error (here in the form of Huber Loss) what in turn leads to agents maximizing the 
discounted cumulative reward after training. Figure 5 shows different learning curves of the trained 
agent. The upper left corner of Figure 5, depicts the distribution resulting from the 10 repetitions of 
the average reward received by the agent (y-axis) over each of the 10 training epochs (x-axis). The 
average reward ranges between 0.4 and 0.55 within the theoretical range of [0,1]. Over the ten train-
ing data epochs, the average reward increases steadily until epoch 6 and then converges. Overall, this 
demonstrates a successful learning progress. The other three plots show the isolated performance 
metrics of the tractor-implement control system: The average area output AO (upper right) is directly 
affected by the working speed and increases from around 2 ha/h to around 2.25 ha/h over the course 
of the training. The average fuel consumption FQ depicted in the bottom left decreased from around 
17.75 to 16.5 l/ha at the end of the training. The progression of fuel consumption and area output 
reflects the aforementioned observations in our data that during secondary tillage both fuel consump-
tion and area output can be improved through an increased working speed. Remarkably, as can be 
seen in the lower right learning curve, the agent also decreased the average roughness coefficient 
during training from around 12.68 mm to around 12.62 mm. This observation shows that on average 
the agent learns to obtain higher reward by increasing the working speed during training on the 
simulated fields while still achieving a reduced roughness coefficient. These observations confirm 
the general suitability of the designed reward function. The distribution and outliers displayed in 
Figure 5 are expected due to the stochasticity in the agent training process.
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Table 2 depicts the results of the evaluation of the best five hyperparameter sets in terms of av-
erage utility over ten experiment repetitions to also evaluate model stability. Each row displays the 
hyperparameters used for the training of the experiment, the average FC, AO, SQ and U(s, a). Reported 
are the means along with the standard deviation for each of the performance metrics. In the last row 
of the table, a simulated baseline is displayed for performance comparison with the different DQN 
agents. This baseline is set to accelerate to and keep a constant working speed of the tractor at 4.5  
what represents common practice when drivers make use of cruise control. The evaluation is per-
formed on the data of a ‘holdout field’ that was neither part of the DQN training data nor of the data 
used for training the environment model. The holdout field is the same as described in more detail 
in Boysen et al. (2023). It comprises positive and negative slopes as well as changing soil conditions. 
Bold entries indicate the best values in terms of the performance metrics for each column. The base-
line with a constant speed of 4.5 km/h reached an average FC of 23.04 l/ha. The average values of 
five different agents trained with the five best found hyperparameters range from 22.46 to 23.3 l/ha 
showing high standard deviations up to 4.98 l/ha. Similarly, the average area output comes with a 
high standard deviation of up to 0.45 ha/h with average values ranging from 1.23 to 1.5 ha/h. In con-
trast, the baseline achieves an average of 1.34 ha/h. The average SQ is determined by the roughness 

Figure 5: The training progress over ten epochs through the training data and for each epoch presented as box plots 
showing the distribution across  agent training repetitions with different random seeds. Hyperparameters with high-
est overall evaluation utility have been chosen (Table 2). The agent training targets to maximize the average reward 
(top left) by increasing the average area output (top right) and at the same time decreasing average fuel consump-
tion (bottom left) and roughness coefficient (bottom right).
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coefficient. Over all of the five agents we could observe a high variance in terms of achieved average 
FC and AO over the ten experiment repetitions. The average roughness coefficient lies between 13.37 
and 13.43 mm with standard deviations up to 0.08 mm. The baseline results in an average rough-
ness coefficient of 13.44 mm. Accordingly, it turns out that the approaches with higher average AO 
and similar FC could still achieve slightly lower roughness coefficients on average. In contrast to the 
baseline controller driving at constant speed, our agent has the possibility to continually adapt the 
working speed to the perceived state which includes the RGB and depth image of the soil surface. 
Our agent with the best found hyperparameter configuration (first row in Table 2) outperforms the 
baseline in two of the three constituent performance metrics (FC and AO) and achieves a comparable 
level of SQ. This is also reflected in the average utility (weighted sum of the normalized performance 
metrics) used as reward signal during training. With one exception, the other agents show similar 
performance compared to the baseline. The average utility of these four models ranges from 0.461 
to 0.478 compared to the baseline of 0.451. Looking at the standard deviations, it turns out that the 
model training seems to be sensitive to the initialization of the agents (i. e., the weight initialization) 
as well as to the environment conditions (i. e., the sampled lane sequence from the overall dataset) 
randomized over the ten experiment repetitions. Accordingly, to draw a first conclusion of the achiev-
able performance improvements using our DQN-based OC agent we now inspect the performance of 
selected policies among the repetitions which scored best in our experiments.

Table 2: Performance of the best DQN agents trained on the five best hyperparameter configurations found. Each 
set of hyperparameters is used to train an individual agent. The training is repeated for 10 times using 10 different 
random seeds. The agent results are compared to a baseline (4.5 km/h) reflecting common practice.

Hyper parameters Average FC  
in l/ha1)

Average AO  
in ha/h1)

Average SQ  
in mm1) Average U(s, a)1)

α = 10-4

γ = 0.5
αdecay = 1.0

22.46 ± 3.34 1.50 ± 0.33 13.43 ± 0.08 0.478 ± 0.066

α = 10-2

γ = 0.9
αdecay = 0.2

23.11 ± 2.49 1.41 ± 0.24 13.41 ± 0.04 0.462 ± 0.050

α = 10-2

γ = 0.9
αdecay = 0.5

23.09 ± 4.98 1.50 ± 0.45 13.43 ± 0.07 0.472 ± 0.095

α = 10-2

γ = 0.9
αdecay = 1.0

25.97 ± 3.46 1.23 ± 0.30 13.40 ± 0.05 0.415 ± 0.064

α = 10-2

γ = 0.5
αdecay = 0.5

23.30 ± 3.22 1.41 ± 0.25 13.37 ± 0.04 0.461 ± 0.058

Baseline with  
constant speed 
(4.5 km/h)

23.04 1.34 13.44 0.451

1) ± 1SD standard deviation (n = 10).

In Table 3, we report the results from the selected top-3 agents from the overall 50 trained agents 
for a more detailed evaluation. These are again compared against the constant  baseline. As before, 
bold values indicate the best scores. This analysis shows that selected, best performing agents are 



agricultural engineering.eu 80(1) 96

indeed capable of generalizing to unseen data (i. e., fields) and can substantially increase the per-
formance in the simulated environment. The best three agents achieve a FC ranging from 17.39 to 
18.77 l/ha compared to the FC of 23.04 of the baseline. Thereby decreasing FC by values ranging from 
18.5 % to 24.5 %. The AO is increased between 35.8 % to 50 % compared to the baseline. This results in  
values deviating from the baseline (1.34 ) with values from 1.82 to 2.05 ha/h for the best three agents. 
The average SQ evaluates to a range from 13.42 to 13.54 mm for the learning agents. In contrast to the 
baseline performance of 13.44 mm, this results in a difference from −0.2 to +0.6 % where smaller val-
ues are better. Eventually, we observed an increased overall utility compared to the baseline of 0.451. 
The DQN agents achieved utility values in the range of 0.583 to 0.590 increasing this score by 29.3 
and 30.8 %, respectively. In summary, we can conclude that the best agents are capable of increas-
ing AO while decreasing FC and still keep a similar seedbed quality in our simulated environment. 
Therefore, the overall utility can be substantially increased while the environment model keeps the 
machine configuration in realistic bounds according to simulated engine torque utilization.

Table 3: Performance of the best three models with the baseline in terms of fuel consumption FC, area output AO, 
seedbed quality SQ and utility U(s, a)

Model FC 
in l/ha

AO  
in ha/h

SQ  
in mm

 U(s, a)

Top 1 17.46 2.01 13.51 0.590
Top 2 18.77 1.82 13.42 0.589
Top 3 17.39 2.05 13.54 0.583
Baseline with  
constant speed 
(4.5 km/h)

23.04 1.34 13.44 0.451

Discussion
Agricultural machines are increasingly equipped with sensors and computing devices and intercon-
nected with telematics systems and cloud services to increase their degrees of operational autonomy 
and operator usability. At the same time, contemporary AI technology is now integrated into these 
systems to allow for even higher autonomy in performing agricultural processes. This in turn leads 
to increasing system complexity spanning across multiple technological scales beginning from the 
machine and field level (IoT), to the farm and inter-farm level (edge to fog), up to an even more 
global  cyber-sphere level (cloud) – for a more detailed discussion on such scales in digital farming 
systems the reader is referred to Bökle et al. (2022). Accordingly, the (semi-)autonomous machines 
become part of an overarching system comprising more digital technology components such as other 
machines operating on the same fields, edge- to cloud-based IT-services and farm management in-
formation systems. It thus has to be acknowledged, that IAT and other digital agriculture solutions, 
more and more finding their way into practice, must be designed by following viable systems and soft-
ware engineering principles that stress the importance of attaining controlled system autonomy and 
self-organization as well as technical resilience. We have claimed in this work that OC offers exactly 
such a systems thinking and design paradigm and thus constitutes a viable candidate for engineering 
future IAT systems. We corroborate our claim by the insights from a case study, whose results we 
further discuss in the following:
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The design of an MLOC-based IAT architecture for our case study of an intelligent secondary tillage 
control system allows it to self-reflect on its current knowledge. By comparing the predicted outcomes 
with the actually observed state shortly after performing the selected actions, current knowledge 
gaps can be detected and handled. This allows for a robust system design able to counter detected 
knowledge gaps for instance by means of reactive finetuning of the various machine learning models 
employed over the reactive and reflection layers and eventually leads to continual agent self-improve-
ment (Lüling et al. 2022). Regarding this possible self-improvement process a notable advantage of 
our approach is that no external data annotation by an expert is necessary for further finetuning of 
the involved machine learning models. Neither for the action selection policy at layer 1, nor for the 
environment model at layer 2. On the other hand, these models are machine-specific and thus require 
new training for a different setup. Fortunately, this problem can again be alleviated by exploiting the 
automatic annotation capability (ground-truth is automatically sensed while navigating the fields) of 
our approach. This allows to collect sufficient amounts of data in a short period of time without the 
need for manual preprocessing and annotation. But it still remains unclear how much data would 
actually be needed to sufficiently train a system for a specific tractor-implement combination and if 
data of similar combinations could be used to pretrain models.

The promising results obtained by training an intelligent agent for automatic tillage control in our 
in silico experiments yet need to be validated in field experiments. The leap in performance that is 
to be expected when reinforcement learning agents are transferred from simulation to the real world 
needs to be analyzed. As a first estimate of the achievable real-world performance, we can state that 
the environment model’s performance on test data, which is based on observations under real field 
conditions, was found to have a relative root mean squared error (rRMSE) of between 12.5 to 13.6 % 
for the prediction of resulting roughness coefficient, engine torque utilization and engine fuel rate 
(Boysen et al. 2023). This error quantity evaluates lower than the performance increases as observed 
for the best agents in our study, when compared to the baseline which represents common practice 
in agriculture (Table 3). This suggests that the performance gain might be higher than the possible 
error of the simulation which is based on the current state of the environment model. Furthermore, 
the current observation of sensitivity to agent policy network initializations, found by analyzing re-
peated agent trainings with different random seeds, can be alleviated as follows: After training and 
continual fine tuning of several agents, policy selection (as done manually in our analysis in Table 3) 
from a policy database can be done automatically by the controller of the reflection layer, e. g., based 
on the utility of the selected goals or uncertainty estimates. Nevertheless, the analyzed sensitivity to 
policy network initializations should be tackled in future works.

While the use of a model-based reinforcement learning agent utilizing the soil-machine environ-
ment model comes to the cost of additional offline training time, it has the notable advantage of al-
lowing to learn a global solution, i. e., a policy, suitable for mixed and continuous state spaces as well 
as different forms of action spaces. In the case of a DQN-agent as applied in this work, the focus was 
set on discrete action spaces. Other reinforcement learning algorithms such as e. g., Proximal Policy 
Optimization (Schulman et al. 2017) are capable of generating global solutions for continuous action 
spaces and can be straightforwardly integrated in our MLOC-based system architecture. A potential 
alternative design choice could be the immediate use of the environment model for conducting plan-
ning by calculating the predicted utility values for all possible next actions and selecting the highest 
scoring action. This approach thus yields a so-called local solution which is always only valid for 
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the current state and discarded afterwards (Moerland et al. 2023). According to Sutton and Barto 
(2018), this can be classified as decision-time planning, i. e., conducting a one-step-look-ahead, where 
the environment model is used to predict and evaluate possible next states for available actions. A 
similar approach from control theory called model predictive control is closely related to decision-time 
planning. This approach for the design of control systems has already been applied to various use 
cases in agriculture including irrigation systems, agricultural machinery, agricultural production 
and product processing as well as controlled environment agriculture (Ding et al. 2018). For instance, 
one related work by Backman et al. (2012) is proposing to use model predictive control on agricul-
tural machinery for navigation of a tractor with a trailed seed drill. However, for larger action spaces, 
the computational demand increases since the outcome of each possible next action needs to be 
predicted, but for reasonable small action spaces, decision-time planning could be a suitable choice 
for the action selector in layer 1 of our system architecture. Recently, conventional control designs 
have been used in the domain of tillage. Riegler-Nurscher et al. (2020) use the roughness coefficient 
as feedback for a proportional control system in a closed loop controller to reach a target roughness 
coefficient during secondary tillage. Closely related, Mohammadi et al. (2022) control the soil shield 
of a tiller to reach a roughness coefficient within a certain target range. In contrast to this work, both 
used the roughness coefficient as their only target for the controller. Our work increases the complex-
ity by also adding fuel consumption and area output as targets for optimization thus generating the 
demand for more complex control design choices. Further alternative design choices comprise the 
implementation of a fuzzy controller as done e. g., in the work of Heiss et al. (2022) for variable rate 
nitrogen application or the application of rule-based learning systems such as the XCS classifier sys-
tem as done e. g., in the context of urban traffic control by different authors (Prothmann et al. 2011).   

Our study so far focuses on the adoption of an OC approach to render a complex agricultural ma-
chine for secondary tillage an IAT. The set scope is therefore on the technological level of machines 
on the fields which we deem important to be addressed as a first step. We proclaim that OC fits the 
extended scope on higher technological levels (farm, inter-farm, etc.) as well, but the discussion would 
fall beyond the scope of this work. Accordingly, we let this elaboration be part of our future work.

Conclusions
Past and current developments, starting from mechanization, over computer-aided and sensor-based 
automation to the rapidly progressing digital transformation, have each led to substantial technolog-
ical advancements in agricultural production. The most recent advancements manifest in connected 
highly automated agricultural machines and robots performing agricultural processes (semi-)auton-
omously by leveraging latest breakthroughs in AI. By moving more and more decision autonomy, 
self-adaptivity and self-organization capabilities to these systems, we arrive at a new technological 
level, which we define as Intelligent Agricultural Technology (IAT) in this paper. To obtain broad ac-
ceptance of emerging deeply digitized solutions, it must be systematically dealt with both perceived 
concerns and technical issues occurring through the integration of current agricultural engineering 
practice with latest information technology approaches at several technological scales. We argued 
that today’s AgTech systems and future IAT systems thus are becoming increasingly complex, what 
demands for new ways of system design and architectures that accommodate for resilient operations 
at the machine and at overarching superordinate system levels such as the farm, inter-farm up to 
entirely virtual levels digitally connecting many actors and their systems. As a systems engineering 
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discipline, OC provides principled methodologies and frameworks for building such complex systems 
deployed in real-world environments. OC’s methodological repertoire strongly draws from natural 
computation and AI, utilizing for instance swarm intelligence algorithms to approach dynamic and 
multi-objective optimization problems, or machine learning to enable such systems to continually 
learn and self-adapt.

Building on this methodological repertoire, in a case study we designed a new multi-level system 
architecture derived from the generic observer/controller model and integrated a modern deep rein-
forcement learning method for application to the technical system of a tractor-implement combination 
performing secondary tillage. Based on in silico experiments, we showcased that based on rigorous 
formal modeling that allows the integration of suitable learning components into an OC system, it 
is generally possible to embed higher levels of intelligence in complex agricultural machines. This 
opens possibilities for future autonomous control of complex agricultural machinery what can, next 
to enhancing process efficiency, also strongly relieve machine operators by improving the overall op-
erability. Yet our findings serve as starting point for commencing further interdisciplinary research 
for paving the way to future-proof IAT. Further research is needed to generalize our initial findings 
to even more complex system levels, incorporating for instance multiple cooperating machines or 
systems connected across spatial and technological scales stressing the importance of the self-organ-
ization property of OC systems. Furthermore, analyzing the extent of the simulation to reality gap, 
its impact on the transfer of RL-based controllers to various field conditions, as well as a comparison 
to more traditional approaches to building control systems such as model predictive control will be 
investigated in future work. In addition, concretizing and developing mechanisms on the reflective 
layer of our proposed architecture to proactively alleviate expectable performance declines consti-
tutes a top priority on our research agenda.
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