
agricultural engineering.eu 80(1), 2025, 35–52

Field contour and obstacle detection  
for automated agricultural machinery:  
A multi-temporal segmentation method 
based on Sentinel-2 satellite data
Steffen Metzger, Marcus Geimer

The increasing automation of agricultural machinery allows operators of these machines to 
carry out additional activities during harvesting, among other things, which can reduce the 
subjective mental workload in cognitively undemanding situations. As these activities distract 
the operator from the driving task, it is important to know the environmental conditions pre-
cisely. This includes the field contour and points of interest (POI), such as obstacles. In order 
for operators to perform additional tasks in a potentially obstructed field, these important 
areas that require increased attention must be identified. This article presents a method to 
identify the contour of the field and the POIs. For this purpose, freely available Sentinel-2 
satellite data is used. The image data is processed with a multitemporal region growing seg-
mentation. A total of ten different fields in northern Germany were examined. The selection of 
seed points and the parameter values were empirically analyzed and optimized. This method 
leads to satisfactory results if suitable satellite image data and seed points are used. The 
mean Jaccard Index (JI) across all selected fields is 0.913. 
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Problem statement and introduction
The demographic shift and the increasing demands for balancing work and family life have led to a 
growing number of individuals abandoning agriculture or deciding not to pursue this profession in 
the first place (Pascher et al. 2020). The “Fahrerkabine 4.0” research project aims to promote the 
development of young talent in agriculture by designing an attractive working environment on the 
combine harvester. The optimized working environment should help agricultural employees to per-
form their tasks satisfactorily, effectively and efficiently.

Due to the complex work processes of a combine harvester and the increasing automation of 
the machines, the operator of such a machine experiences many inhomogeneous external workload 
conditions. However, De Waard (1996) showed that the ideal mental workload state of an operator is 
in the medium mental workload range. Monotony (very low mental workload) and mental overload 
should be avoided, as this reduces performance and well-being. A fundamental goal of the “Fahrer-
kabine 4.0” project is to reduce the operator’s mental workload peaks and thus increase well-being 
(Metzger et al. 2022b). Advances in automation make it possible to suggest targeted task recommen-
dations to the operator in the form of possible activities during phases of reduced mental workload. 
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The activities can range from machine-related setting checks and watching training videos to private 
communication and the use of social media. In addition, tasks that would normally have to be com-
pleted after field work, such as documentation duties and private and professional organizational 
activities, can be carried out (Metzger et al. 2022a). This can significantly improve the work-life bal-
ance, as overtime can be reduced during the harvest period. It is also possible to provide assistance 
in phases of higher mental workload.

To enable the operator to shift focus away from the driving task and to propose targeted recommen-
dations or actions to the user, various boundary conditions must be known (Metzger et al. 2022a). 
On the one hand, the user’s current state of mental workload must be known, which is detected by 
eye-tracking parameters and pulse measurement and passed on to the system. Secondly, the system 
must have knowledge of the environment to be able to suggest task recommendations in situations 
where the user is susceptible. The field contour is particularly important for the environmental condi-
tions, as the turning process of the combine harvester, for example, can be a challenging task for the 
operator, even with automated turning. This is mainly due to the fact that objects and other obstacles 
can accumulate at the edges of the field due to surrounding structures such as woodland and traffic 
routes. However, there are also irregularities and structures in the field that require the operator’s 
increased attention. Storage crops, electricity pylons and wind turbines are particularly worth men-
tioning in this context. 

Other agricultural machines, such as tractors, are also suitable for the use of such an assistance 
system and the method for field contour and obstacle detection. Although the work processes in a 
combine harvester are demanding due to the specific focus on harvesting, they are less varied within 
the harvesting period than the numerous possible applications of a tractor, which are given by the 
various attachments. However, since not all situations and functions of a combine harvester can yet 
be fully automated, an operator is absolutely essential for these important moments. However, the op-
erator mainly takes on an observing role, which makes him more susceptible to distracting activities 
in the form of task recommendations. In the following, the field contour and obstacle detection is first 
examined using the example of a combine harvester. 

In view of the fact that a sufficient and production-ready environment sensor system for large-
scale obstacle detection is expensive and has so far only been implemented in specific autonomous 
machine types in series machines, an alternative approach is presented below (CLAAS Gruppe 2023, 
Caes 2022). One promising method is remote sensing with satellite data. 

Material and methods
Initial satellite data
There are currently a large number of earth observation satellites that could be used for remote sens-
ing with the aim of field contour and obstacle detection. Table 1 shows the different missions and 
their specific resolutions. They were selected based on their level of popularity and their ability to 
provide high-resolution data on land masses. (Airbus Defence and Space 2019, DigitalGlobe 2014, 
Fletcher 2012, Planet Labs 2016, U.S. Geological Survey 2019)
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Table 1: Overview of selected earth observation missions with the respective resolution of the satellites

Mission Spatial resolution  
in m

Spectral resolution  
in channels

Time resolution  
in days

Sentinel-2
10
20
60

13 5

Landsat 8 15
30 11 16

Spot 7 1.5
6 5 1–3

World View 3
0.31
1.24

3.7
30

29 < 1

Rapideye 6.5 5 < 5.5

In principle, a higher resolution, both in terms of time, space and spectral resolution, is more ad-
vantageous for the following results than a lower resolution. However, as the missions with very high 
resolution are only commercially available, the Sentinel-2 satellites of the ESA’s Copernicus program 
are used in this case. Although Landsat 8 is also free of charge, it offers a lower spatial and temporal 
resolution in comparable channels. The Sentinel satellites offer a suitable spatial and temporal res-
olution on the one hand and 13 different spectral channels from 443 nm to 2190 nm on the other. 
These channels can be used to form special indices to obtain further information. The most widely 
used index for the detection of vegetation is the Near Difference Vegetation Index (NDVI) (Bhandari 
et al. 2012). There are numerous vegetation indices, many of which are based on the Normalized Dif-
ference Vegetation Index (NDVI). An example of this is the Enhanced Vegetation Index (EVI), which 
specializes in the evaluation of canopy (Huete et al. 2002), whereas the NDVI generally considers the 
chlorophyll of the vegetation. The NDVI is therefore considered representative in the following. In an 
empirical comparison, the Normalized Difference Water Index (NDWI) also delivered very good re-
sults, which is why it is also considered below. The NDWI is mainly used to detect water surfaces, but 
can also be used very well to detect vegetation (McFeeters 1996). The NDVI is calculated as follows:

 (Eq. 1)

NIR denotes the wavelength of the near infrared range and therefore band 8 in the case of the Sen-
tinel-2 spectrum. RED stands for the wavelength range of visible red light and therefore band 4 of the 
Sentinel-2 spectrum. As the reflectance of the NIR spectrum increases significantly in healthy vegeta-
tion compared to visible light, vegetation can be recognized very well with this index (Kuechly et al. 
2020). The NDWI is calculated slightly modified as follows:

 (Eq. 2)

Both NDWI and NDVI image data can be used in the following steps.

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = �������
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Process steps
An overview of the overall algorithm is shown in Figure 1. The algorithm can be broken down into 
three different process steps. The pre-process includes the initial data acquisition with dynamically 
adapted requirement profiles for the data providers of the respective satellite data. The two sub-pro-
cesses of the main process take place in the subsequent process step. On the one hand, the field 
contour detection algorithm is executed, and on the other, the obstacle detection based on it, which 
is carried out exclusively in the already detected field for optimization reasons. Finally, the collected 
results from the previous steps are prioritized and merged in the post-process to obtain a combined 
field contour and obstacle mask.

Start

End

ESA – Sentinel 2

Data 
retrieval via 
the Sentinel 

Hub API

Calculation of the default 
parameters:

Seed point, observation 
duration, cloud specifications

Filtered Sentinel-2 
data records

Prioritization and 
fusion of masks

Final fusion of the 
masks

Prioritization and 
fusion of masks

Field contour detection

Binary masks 
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Obstacle detection

Binary masks 
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Figure 1: Flow of the overall algorithm
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Pre-process
As the field contour and obstacle detection should be fully automated, it is also necessary to be able 
to retrieve the underlying satellite data automatically. This should also be done depending on the cur-
rent GNSS position of the combine harvester to minimize the data to be requested. The Application 
Programming Interface (API) of the Sentinel-Hub engine from Sinergise, for example, enables the 
automated retrieval of data (Sinergise Ltd. 2019). To optimize the data size to be queried, a square 
with a side length of 3500 m is placed around the current GNSS position. This square is used as a 
boundary for the data to be queried and its size ensures that the field to be processed is completely 
enclosed. This size offers a compromise between data processing speed and coverage size, as the 
largest fields in the largest farm size class are assumed to be <13 ha (Jahns et al. 1983). However, as 
soon as the current position of the combine harvester approaches the 10% wide edge of the requested 
satellite data, it is requested and processed again.

A multi-temporal approach is used to minimize the influence of clouds, other environmental events 
and short-term local changes such as construction work. For this purpose, the most cloudless data 
with a maximum cloud cover of 10% from the vegetation period April to September of the last two 
years, including the current year, are used. The main advantage of this is that many cloud-free days 
are available and the decisive growth phases of the plants are covered (Deutscher Wetterdienst 
2023, Karlsson et al. 2023). This means that many different plants can be reliably detected regard-
less of their growth behavior and the associated reflectivity for different wavelengths of light. Accord-
ing to initial tests with the indices under consideration, the fall and winter months do not provide 
promising results and are not considered further here.

Main process
There are different methods for carrying out image segmentation. Four different types of segmenta-
tion are analyzed and evaluated below as examples. The simplest method is pixel-oriented segmen-
tation. Here, the pixel value, usually the gray value of a pixel, is compared with a predefined limit 
value. If the pixel value is within the value range under consideration, it is assigned to the object 
being searched for. This method works very efficiently when homogeneous objects are to be detected 
in front of a homogeneous background (Jähne 2012). Since fields and field boundaries in remote sens-
ing data can be inhomogeneous with regard to the pixel gray value and the field is therefore poorly 
differentiated from the background, this approach is not expedient for detecting field contours and is 
only pursued further for obstacle detection.

If the shape of the object being searched for is known, model-based segmentation can be used. 
With the knowledge of the object shape, even partially hidden objects can be found in the image. For 
example, the Hough transformation can detect straight edges, even if they are interrupted. However, 
as agricultural fields can vary greatly in shape in reality, no generally valid shape can be specified 
(Jähne 2012). Meyer et. al. (2020) chose this approach, but did not achieve satisfactory results. Mod-
el-based segmentation is therefore not considered further. 

Another option is edge-based segmentation. This type of segmentation uses the gray value jump 
at an edge to detect it. This can be determined by the first and second order derivatives. A prominent 
example is the Canny algorithm (Canny 1986). However, the image must first be noise-reduced using 
a filter, as edge-based segmentation methods are prone to noise. Subsequently, a contour tracking 
algorithm is necessary to obtain closed objects. In addition, further segmentation, e. g. a watershed 
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transformation (Vincent and Soille 1991), is necessary to reduce the detected fields to the field to 
be searched for (Jähne 2012, Solomon and Breckon 2011). Due to the greater complexity caused by 
several consecutive methods, edge-based segmentation is not considered further in this procedure.

The last type of segmentation to be considered is the region-based method. Here, pixels are com-
pared with the neighboring pixels based on certain criteria, such as the grey value, and combined. 
A frequently used method is seed-based region growing, which requires one or more seed points as 
a reference. The functionality of this method is illustrated step by step in Figure 2. Figure 2a shows 
the raw image. From Figure 2b to Figure 2g, neighboring pixels of the seed point are compared and 
combined step by step using the seed-based region growing method.

Since the seed point can be specified by the GNSS position of the combine harvester and the algo-
rithm always outputs contiguous regions, this method is used as the basis below. In order to further 
optimize the results from the segmentation methods, the basic process of morphological operators is 
used. These primarily include erosion and dilation, which are able to change the size of the objects 
recognized in the image. Erosion causes a reduction in the size of existing objects, and in the pro-
cess, objects may also be split. The dilation operator ensures object growth. The basic functionality is 
shown in Figure 3 and Figure 4.

Figure 2: Region Growing (Imdad et al. 2019)

Figure 3: Erosion operation (Werner 2021)
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The first step of the field contour detection algorithm is seed-based region growing, which is 
shown in Figure 2. Aftesr each process step, the selected pixels are stored in a mask. This method is 
performed at the beginning to roughly segment the area under consideration. The input parameters 
of this segmentation method are the seed point and the limit value of the pixel gray value. The seed 
point is the current GNSS position of the combine harvester. In order to make the region growing 
method more robust with regard to the light spectra used in the source data and the different growth 
phases of the plants, the limit value of the pixel gray value is dynamically adjusted or determined. 
This means that the value indicating the gray value at which pixels are added to the same area de-
pends on the characteristics of the source image. This is achieved by multiplying the standard devia-
tion of the pixel gray values of the source image by an input parameter to calculate the gray threshold 
value. The actual pixel gray value is already taken into account via the seed point in region growing.

Once the region growing has been completed, an erosion operation follows. This procedure makes 
it possible to counteract leaking segmentation in the previous step. This erosion allows regions that 
are only connected by thin bridges to be reliably separated. The next step is to check whether the 
original seed point is still located in the new area created by the erosion. If this is not the case, the 
source image is discarded, as the available data, in combination with the selected input parameters 
and the seed point, do not allow contour detection. However, if the erosion operation is successful and 
the seed point is still located in the newly created area, a second region growing is performed. The 
second region growing is only used to isolate the searched field and is applied to the resulting binary 
mask, thereby discarding the areas separated by the erosion operation. 

In order to obtain the final recognized area, the erosion process must be reversed. A dilation oper-
ation is performed for this purpose. The parameters are optimized for the previous erosion process. 
Figure 5 shows this process. This area is now saved as a mask for each image and further processed 
into an edge mask using the Sobel operator (Sobel and Feldman 2015). This edge detection algorithm 
is applied to the binary mask from the previous process steps to obtain only the circumferential edges 
of the mask.

Figure 4: Dilation operation (Werner 2021)



agricultural engineering.eu 80(1) 42

These process steps are repeated for each acquired image from the pre-process. The edge masks 
obtained in this way are prioritized or weighted based on the vegetation phases and cloud cover and 
merged into one mask. For this purpose, a mean value is calculated from the binary masks across 
all masks and compared with a threshold value. This mask is then made available to the obstacle 
detection algorithm. The obstacle detection algorithm differs from the contour detection in the subdi-
vided methods. Due to the preceding contour detection, these methods can be reduced to the already 
detected field. This optimizes the computing time, the binarization threshold is better adapted to the 
relevant area and the number of possible false detections is minimized.

Initially, the respective source image is processed using a pixel-based low-pass Wiener filter. This 
reduces the noise components in the source image and facilitates the detection of obstacles and points 
of interest (POIs) (Lim 1990). The area under consideration is then binarized. This selects regions that 
stand out from the homogeneous crop. The Otsu method is used to determine the ideal binarization 
limits (Otsu 1979). This method can be used to optimize binarization and thus obstacle detection, as 
multiple limit values can also be determined. In the proposed method, two Otsu thresholds are calcu-
lated, and their difference is used as a criterion for further selection.

After this process step, any open structures, for example in the form of a crescent, are closed to 
ensure a round POI. This is made possible by dilatation and subsequent erosion. This combination of 
operations significantly improves the shape of the POIs, as gaps within the POIs are closed and the 
outer structure is rounded off.

Figure 5: a) First Region Growing, b) Erosion process, c) Second Region Growing and dilation process

c)a) b)
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Post-process
The post-process of the algorithm mainly involves the selection and subsequent fusion of suitable 
masks. The selection is based on various selection criteria.

1.  Seed point position: 
If the seed point is no longer within the detected field after the field contour detection process 
has been completed, the affected mask is discarded.

2. Outliers: 
To increase robustness against outliers, both the masks with the smallest detection area and 
those with the largest detection area are discarded, as these are often instances of island detec-
tions or leakage. Additionally, all masks whose area (Apx) deviates by more than an empirically 
determined threshold from the mean area of all masks(̄Apx) are excluded (Apx < 0.3 ∙ ̄ Apx or 
2.5 ∙ ̄ Apx < Apx).

3. Otsu Difference: 
The final selection criterion is the Otsu Difference. If the difference between the two calculated 
Otsu thresholds is not significantly distinct (ΔOtsuthresh < 0.1) the mask is discarded. Similar 
Otsu thresholds occur only in cases where the source data are visually very similar. Such data 
are unsuitable for obstacle detection.

After the masks have been refined through the selection process, they are merged into a single mask. 
The masks from the current year are given double weighting. This step is necessary because field 
geometry can change due to alterations in crop management by the farmer. By applying different 
weightings, outdated data and subsequent misdetections can be avoided.

In the next step, the calculated pixel-precise mean value of all masks, represented as a resulting 
grayscale value, is compared to a predefined threshold, referred to as the “pixel threshold”. If the 
grayscale value exceeds this threshold, the corresponding pixel is set in the fused final binary mask. 
This method is applied to both field contour masks and POI masks.

Results and discussion
A total of 10 different fields in northern Germany were analyzed. These fields vary in size, shape, 
cultivated crop, and were randomly selected. To eliminate the need for actual harvesting machine 
operations, the seed points were freely chosen. Manually and pixel-accurately mapped obstacles and 
contour boundaries served as reference data. These reference data were generated using Sentinel-2 
imagery. The analyzed fields are listed in Figure 6, where the reference field contours are shown in 
red, and the filled POIs are depicted in blue.
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Parameter combinations
Five different parameters, including the frequency bands, the standard deviation of the region-grow-
ing method (σRG), the strength of erosion and dilation, as well as the pixel threshold for temporal 
mask fusion (PTt), were analyzed in 2,475 different combinations per field. Figure 7 provides an 
example of an analyzed field. To evaluate the detection quality, the Jaccard Index (JI) is used, which 
considers true positive (TP), false positive (FP), and false negative (FN) pixels. The JI provides a 
simple yet effective metric for assessing the similarity between two sets of objects and is commonly 
applied in image segmentation tasks (Wang et al. 2022). It accounts for both the overlap and the 

Figure 6: Analyzed fields with reference boundaries (red) and POIs (blue) using the NDWI band combination (Modi-
fied Copernicus Sentinel data 2022/Sentinel Hub)

1 2 3

4 5 6

7 8 9

10
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differences between the detected objects. An alternative metric, for example, would be the F1-Score, 
which weights TP differently. 

Both metrics, however, measure the same aspects, which is why the JI is used according equation 3 
(Taha and Hanbury 2015):

 (Eq. 3)

Firstly, the evaluation showed that the NDWI band combination delivers the best results, which is 
why all subsequent results are based on NDWI image data. Secondly, the erosion and dilation strength 
hardly changes in high-quality detections and remains at 2 px and 4 px (10 m––px). Figure 8 shows the 
variation of results of different parameter combinations. Shown are the best and worst median as well 
as results that are evenly distributed between these two values to give a comprehensive overview of 
the full range of results. If no detection could be performed, the parameter combination was ignored. 
To minimize the relevance of the seed point choice, five seed points were selected for the evaluation. 
Care was also taken to ensure that these were not located at the immediate edge of the field, as the 
detection rate is significantly reduced there due to the inhomogeneous pixel environment. The free 
choice of seed points made it possible to dispense with an actual harvesting run. The JI of the respec-
tive seed points was subsequently averaged for each field. Across all ten fields, the median of the 
highest JI is 0.913. This value means that  of the detected field pixels match the actual field pixels of 
the satellite images. This value is achieved with a parameter combination of σRG = 0.24 and PTt = 0.4.

𝐽𝐽𝑁𝑁 = ��
��������   1 

Detected edge

Detected POI

Seed point

Figure 7: Detected field (Modified Copernicus Sentinel data 2022/Sentinel Hub)
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In order to be able to recognize differences in the recognition quality between the individual ob-
served fields, quality metrics frequently used in literature are shown for each field in Table 2. In addi-
tion to the TP, FN, FP these also include the true-negative (TN) pixels, the TP rate (TPR or the recall, 
the positive predictive value (PPV) or the precision and the JI. The table contains the results of the 
best parameter combination described in the previous paragraph. It is easy to see that the recognition 
quality depends heavily on the field under consideration. In the case of field 10 and field 7, the large 
number of FP pixels that there was a major leakage. This is also reflected in the poor JI of 0.53 and   
0.66 respectively. Field 2, however, was clearly under-detected, which is shown by the large number 
of FN pixels. This can have a critical effect on POI detection, as these may lie outside the detected field 
or may also be under-detected.

Table 2: Quality metrics averaged over five seed points

Field 
No.

TP  
in px

FN  
in px

FP  
in px

TN  
in px

TPR / Recall  
in %

PPV / Precision  
in % JI

1 3794.25 15.75 312.00 2245878.00 99.59 92.43 0.92
2 4420.50 1565.50 36.00 2243978.00 73.85 99.19 0.73
3 3072.75 654.25 223.50 2246049.50 82.45 93.23 0.78
4 774.67 13.34 67.33 2249144.67 98.31 92.00 0.91
5 3719.00 36.00 171.50 2246073.50 99.04 95.59 0.95
6 2209.00 134.00 59.67 2247597.33 94.28 97.38 0.92
7 1790.00 146.00 1227.50 2246836.50 92.46 70.82 0.66
8 6046.20 13.80 425.00 2243515.00 99.77 93.53 0.93
9 2170.80 29.20 151.80 2247648.20 98.67 93.50 0.92
10 4210.60 34.40 4443.80 2241311.20 99.19 52.87 0.53
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Figure 8: Comparison of different parameter combinations



agricultural engineering.eu 80(1) 47

Seed points
The following evaluations are based on results that were generated from each individual pixel of the 
source image as a selected seed point. Through this comprehensive calculation, between 788 and 
6060 seed points were considered per field, corresponding to the number of pixels in the ground area 
of the analyzed fields. The JI of all seed points were then averaged for each field.

Compared to the parameter variation, the largest variance of the JI is achieved by the quality of the 
seed point selection. In order to solve this variance problem, not only is the current GNSS position 
selected as the seed point (SP), but six seed points on two circular paths of different radii (R1, R2) are 
added. The seed points are each offset by 120° to ensure the best possible coverage. Figure 9 shows 
this arrangement. This method can significantly increase the detection quality and thus the JI. This 
improvement is primarily due to the reduced impact of poorly placed seed points, as they can be cor-
rected by seed points located further outward. 

A comparison between a single seed point and the method with distributed seed points is shown in 
Figure 10. At JI = 0.837, the median is significantly higher than the method with a single seed point. 
Taking several seed points into account results in additional optimization options. Firstly, the radii of 
the seed point circular paths (R1, R2) can be varied, and secondly, the circular paths can be weighted 
differently in the mask fusion.

0°
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240°
270°

300°

330°

1 px
2 px
3 px
4 px
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SP R1 R2

Figure 9: Seed point arrangement with multiple seed points
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Figure 11 shows the influence of different circular path radii rR1 and rR2 . The median of the JI of 
all fields was calculated for this figure. Since rR1 > rR2 must apply, there are correspondingly fewer 
possible combinations. The best results can be visibly achieved with low rR1 values. An optimum JI 
can be achieved with rR1 = 2 px; rR2 = 7 px.

A variation in the weightings of individual seed points shows no significant effect. These results 
are presented in Figure 12. Both the central seed point (SP) and the two surrounding circular paths 
(R1, R2), each with three additional seed points, were varied. The figure illustrates that even substan-
tial modifications in the weightings have no notable impact on detection quality and, consequently, 
the JI. Therefore, a specific weighting is not a viable approach for optimization.
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Figure 10: Comparison seed point method per field
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To conclude the discussion of the results, they are now placed in the context of previously con-
ducted research. Wang et al. introduced a method that determines field boundaries using U-Net-based 
“Fully Convolutional Network (FCN)” models and achieved a JI of 0.801 (Wang et al. 2022). Watkins 
and van Niekerk (2019) combined edge detection algorithms with image segmentation methods to 
determine field boundaries, achieving an Overall Accuracy (OA) of 0.929. In contrast to these ap-
proaches, the method presented in this article relies on a machine-bound system. This enables the 
application of a seed-point-based algorithm, such as the proposed multi-temporal Seed-based Region 
Growing. This eliminates the need for the labor-intensive creation of training data and subsequent 
model training. With appropriate seed point selection and optimized process parameters, the achieved 
result (JI = 0.913) compares well with the outcomes of other methods reported in the literature.

Conclusions
The results demonstrate that, when the fundamental criteria are met and process parameters are ap-
propriately chosen, the proposed method can effectively detect field contours and obstacles in fields 
with varying geometries, sizes, and crops. However, Table 2 also highlights significant differences in 
detection quality across the fields. Fields 10 and 7, for instance, show only minor differences from 
neighboring fields at their edges, which promotes undesirable leakage. Field 2, on the other hand, is 
under-detected, illustrating the variability in field characteristics. Apart from the quality of remote 
sensing data, the selection of seed points offers the greatest potential for optimization. This is evident 
from the observation that detection cannot proceed without a minimum quality threshold for these 
two criteria. Improvements are already achieved by adding additional seed points along circular paths 
around the current position (Figure 10). However, an appropriate selection of process parameters can 
also significantly influence detection quality (Figure 8). 

The presented method enables the estimation of the time until critical situations, such as turning 
maneuvers or obstacle encounters, without requiring machine-mounted sensors. In exceptional cas-
es, such as Fields 10 and 7, detection difficulties arose, underscoring that the method does not replace 
safety-critical pre-field detection but instead provides supplementary knowledge about the entire 
field. By integrating the current GNSS position and machine speed, the time available to the operator 

1, 1
, 1

3, 1
, 1

1, 3
, 1

3, 3
, 1

1, 1
, 3

3, 1
, 3

1, 3
, 3

3, 3
, 3

Weight (SP, R1, R2)

0

0.2

0.4

0.6

0.8

1

Ja
cc

ar
d-

In
de

x 
(JI

)
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before a critical situation arises can be determined. This allows for tailored task recommendations 
that enhance the operator’s well-being and performance without compromising safety. The proposed 
method primarily applies to combine harvesters, as their workflows are less diverse. Future research 
could explore the method’s applicability to other types of agricultural machinery. 

To further enhance the stability and quality of detection, the following steps can be implemented 
in future studies.

 � Leveraging commercial remote sensing data enables significantly higher resolution, allowing for 
finer and more precise detection of obstacles and field contours.

 � Knowledge about the specific crop type in the field may improve detection, as process parameters 
can be tailored to the crop rather than relying on generic parameters. This could reduce variabil-
ity between under-detection and over-detection in challenging fields.

 � To enable more reliable detections, the system must be continuously updated as the harvesting 
progresses. This would allow for the inclusion of additional seed points, improving and correcting 
initial poor detections.

 � The method could benefit from sensors carried by drones, enabling more precise investigation 
and classification of POIs. This would allow for targeted responses to individual obstacles. How-
ever, thanks to satellite data, there is no need for the labor-intensive task of flying drones over 
the entire field.
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