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Adaptive dynamic programming for robust 
path tracking in an agricultural robot using 
critic neural networks
Alireza Azimi, Redmond R. Shamshiri, Aliakbar Ghasemzadeh 

Trajectory tracking control for agricultural mobile robots poses unique challenges due to inher-
ent non-holonomic constraints and external disturbances, which can cause deviations from 
the desired path, affecting the robot‘s performance and operational efficiency. This paper pre-
sents an advanced learning-based control framework for robust path tracking in agricultural 
robots with Ackermann-steering mechanisms. Using Adaptive Dynamic Programming (ADP) 
and a Critic Neural Network, the proposed method handles external disturbances, including 
wheel slippage, which is common in agricultural environments. The Critic Neural Network the 
Hamilton-Jacobi-Isaacs (HJI) equation, allowing the controller to learn the near-optimal con-
trol policy in real time and adapt to environmental disturbances. The critic network‘s weights 
are updated online through an adaptive law, ensuring continuous learning and adaptation 
throughout the operation. Furthermore, the paper presents comprehensive simulation stud-
ies to evaluate the effectiveness of the proposed framework. The results demonstrate signifi-
cant improvements in trajectory tracking performance compared to existing control methods, 
particularly in scenarios with substantial uncertainties and disturbances.
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In recent years, the agriculture industry has been increasingly leaning towards the use of autono-
mous robots and self-driving vehicles to address labor shortages and improve operational efficiency 
(Sun et al. 2023, Ju et al. 2022), Although all of these endeavors are early-stage projects developed by 
startups and established companies and not broadly implemented worldwide. This interest has been 
particularly evident in the area of navigation and precise trajectory tracking for Autonomous agricul-
tural vehicles (AAV), including electrical tractors (Shamshiri 2024) and mobile robots, that operate in 
challenging environments such as vineyards, orchards, and fields (Shamshiri et al. 2024, Zhou et al. 
2023, Iberraken et al. 2022, Ravankar et al. 2021, Moysiadis et al. 2020). Accurate predetermined 
trajectory tracking is essential for tasks like crop monitoring, yield mapping, targeted spraying, au-
tonomous harvesting, and overall farming productivity (Ju et al. 2022, Zhang et al. 2020). However, 
these robots often face significant challenges in agricultural farms due to off-road terrain, non-holo-
nomic constraints imposed by their steering mechanisms, sensor accuracy, and external disturbances 
like wheel slippage on uneven or loose soil surfaces (Jing et al. 2021, Lenain et al. 2006). 

Several studies have explored techniques for autonomous tracking control and navigation of ag-
ricultural robots, each with unique strengths and limitations. A classical controller, such as the pro-
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portional-integral-derivative (PID), has been applied in specific applications. However, it may lack 
robustness when dealing with external disturbances and adaptability when changing working con-
ditions (Monsalve et al. 2022, Nagasaka et al. 2009). For instance, Wang et al. (2020) proposed a 
PID-based cascade controller for yaw rate and lateral position control. Still, they did not consider 
varying terrain or weather conditions in the lateral displacement control system. Fuzzy logic control 
(FLC) is another approach to AAV trajectory tracking that diverges from traditional approaches by not 
relying on precise mathematical models. A PID and a type 2 FLC were used to control an autonomous 
tractor‘s longitudinal velocity and yaw dynamics, along with a learning algorithm to enhance its 
trajectory tracking performance (Kayacan et al. 2015). The study demonstrated a 30% improvement 
compared to conventional controllers. Liu et al. (2024) proposed a kinematic model and a fuzzy slid-
ing mode approach law for the G33 lawn mower. They used the IA* path planning algorithm to en-
hance path tracking efficiency and lessen fuel consumption. It is important to note that their findings 
were achieved under undisturbed conditions. While FLC is a suitable option due to its robustness and 
flexibility, it can be challenging to implement in practical scenarios due to its dependence on human 
expertise. Model Predictive Control (MPC) is a popular control strategy extensively studied for agri-
cultural vehicle path tracking. 

A modified MPC method for articulated steering tractors, accounting for vehicle dynamics and 
constraints, was presented by Zhou et al. (2023). Carpio et al. (2020) proposed a navigation ar-
chitecture for Ackermann vehicles based on MPC considering kinematic and dynamic constraints. 
These MPC approaches can handle constraints but require accurate system models and involve heavy 
mathematical calculations. Researchers have also explored sliding mode control (SMC) techniques 
for trajectory tracking control of AAVs. Ge et al. (2023) developed a robust adaptive SMC approach 
that adapts to parametric uncertainties in modeling and external disturbances like road banks. In 
Nagasaka et al. (2009) and Zhang et al. (2022) a nonsingular fast terminal SMC was integrated with 
a disturbance observer, achieving finite-time trajectory tracking for agricultural tractors. Although 
sliding mode control methods provide robust performance, they may experience chattering problems 
that lead to significant mechanical fatigue, making them unsuitable for actual AAV applications. Fast 
supertwisting sliding mode control (FSTSMC) and barrier function adaptive sliding mode control 
(BFASMC) were proposed by Yang et al. (2024) and Ding et al. (2004) to curb the chattering issue that 
exists in SMC. A fixed-time generalized super-twisting SMC method was also utilized to account for 
wheel slipping, improving tracking performance on varying terrains (Sun et al. 2023).

To address the challenges mentioned earlier for each controlling method, this paper proposes a 
robust adaptive kinematic control framework tailored for an Ackermann-steering agricultural mobile 
robot in the presence of slipping of the wheels as an example of external disturbance. The proposed 
approach uses an adaptive dynamic programming (ADP) approach, employing a critic neural net-
work to approximate the Hamilton-Jacobi-Isaacs (HJI) equation associated with the H-infinity optimal 
control problem. The critic network‘s weights are updated online through an adaptive law, enabling 
the controller to continuously learn and adapt to changing system dynamics and disturbances while 
providing robust trajectory tracking performance.

The main contributions of this work can be summarized as follow: (i) derivation of a comprehen-
sive kinematic model for non-holonomic constraints and external disturbances that can be expected 
in agricultural fields, (ii) development of a critic neural network approximation technique for solving 
the HJI equation, (iii) formulation of an adaptive learning law for online weight adaptation that ena-
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bles the controller to handle disturbances, and (iv) integration of the proposed method into a robust 
adaptive control framework customized for an Ackermann-steering agricultural robot. The remainder 
of the paper is organized as follows: Section II details the robot‘s kinematic model, accounting for 
external disturbances. Section III outlines the preliminaries and problem setup for the H-infinity ro-
bust adaptive control approach. Section IV presents the neural network approximation and adaptive 
learning law. Section V discusses the kinematic controller design. Section VI reports the simulation 
results and performance evaluation on a realistic orchard environment under wheel slippage distur-
bances conditions.

Kinematic Model of Ackermann-Steering Agricultural Mobile Robot
This section establishes a kinematic model for an agricultural mobile robot with a double Ackermann 
steering mechanism. The model captures the robot‘s motion by analyzing the instantaneous behavior 
of its center of mass (COM). The robot under consideration is a four-wheeled vehicle with a double 
Ackermann steering mechanism provided in Figure 1. It possesses a rectangular base with dimen-
sions a (length) and b (width). The rear and front wheels are steerable and aligned according to the 
Ackermann condition. 

The model derivation revolves around analyzing the COM‘s instantaneous motion. Let (xr, yr) de-
note the COM‘s Cartesian coordinates, θ represents the robot‘s heading angle, and δ symbolizes the 
steering angle of the front wheels. These parameters collectively form the robot‘s posture vector, 
denoted as q = [x, y, θ, δ]T. Additionally, v and ω represent the robot‘s linear and angular velocities 
about the COM, respectively. The ideal kinematic model of the robot is outlined in equation 1 (El Bou 
et al. 2022):
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Figure 1: The double-Ackermann-Steering mobile robot used in the study
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The state vector X at time t is represented as [X₁(t), X₂(t), X₃(t), X₄(t)], where X₁(t) and X₂(t) indicate 
the position coordinates in a 2D environment (x, y), X₃(t) denotes the heading angle (θ) and X₄(t) 
denotes the steering angle (δ). U(t) = [U₁(t), U₂(t)] is the control vector, where U₁(t) = v(t) and U₂(t) 
= ω(t), represents the linear and angular velocity, respectively. J(X) = [cos(X₃ (t)), sin(X3(t)), tan(X-

4(t))  ⁄ L, 0; 0,0,0,1]T is the kinematic transformation matrix or the velocity transformation matrix. 
The superscript dot in equation 1 denotes the time derivative. These equations capture the core con-
straints imposed by the Ackermann steering geometry, where the robot cannot achieve pure lateral 
movement without altering its heading. The ideal kinematic model has limitations due to real-world 
agricultural environments that introduce external disturbances like slippage, requiring the incor-
poration of non-ideal kinematic effects. Therefore, the non-ideal kinematic of the robot is expressed 
in equation 2 and 3 (Keymasi and Jalalnezhad 2018). This equation includes time points T₁ and T₂ 
where disturbances occur, with H(.) representing the unit step function (Keymasi and Jalalnezhad 
2018). To provide a deeper analysis, the disturbance matrix K(.) is the 4 × 4 identity matrix, indicat-
ing disturbances affecting all posture vector components x, y, θ, and δ. Following with the simplified 
disturbance vector of D as defined in equation 4 and Damp is the amplitude of it. The derived kinemat-
ic model predicts efficient and safe robot motion in agriculture and helps design control algorithms 
for accurate maneuvers.

 (Eq. 2)

 (Eq. 3)

 (Eq. 4)

Robust Adaptive Control: Preliminaries and Setup
The system under consideration is represented by equation 5. Here, x ∈ ℝⁿ denotes the state vector, 
u ∈ ℝᵐ represents the control input, and z ∈ ℝᵖ signifies the external disturbance. The functions 
f(.), g(.), and h(.) capture the system dynamics, input dynamics, and disturbance dynamics, respec-
tively. It is assumed that both u and z satisfy the L₂ norm on the interval [0, ∞). Furthermore, these 
functions are assumed to be locally Lipschitz continuous, guaranteeing unique solutions, and f(0) = 
0, implying the origin is an equilibrium point for the unforced system. Additionally, the system is 
presumed to be stabilizable and robustly controllable within a compact set Ω ∈ ℝⁿ of the state space 
(Zhao et al. 2022). To determine the optimal control input (u), a cost function, as defined in equation 
6, is formulated to be minimized. This function incorporates weighting matrices Q and R (positive 
definite diagonal) and a positive constant γ to ensure boundedness. The term γz represents the upper 
bound of uncertainties (Zhao et al. 2022). The H∞ control problem is closely linked to the concept of 
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zero-sum games. Equation 7 expresses this connection by formulating the controller design task as 
finding a saddle point that satisfies the Nash condition. Here, V*(x) denotes the optimal value func-
tion. Differentiating equation 5 along system trajectories leads to the Bellman equation 8. This equa-
tion relates the optimal value function to the system dynamics and the cost function. The Bellman 
equation is further connected to the Hamilton equation 9. Through additional differentiation steps, 
the optimal values for the control input and disturbance, representing the two players in the zero-sum 
game, can be computed, as shown in equation 10 and 11. Substituting the optimal control u* (given 
by equation 10) and disturbance function z* (given by equation 11) into the Hamiltonian formulation 
(given by equation 9) yields the value function V(x) as given by equation 12. This equation represents 
the HJI partial differential equation, a cornerstone of the differential game formulation for H∞ control.

 (Eq. 5)

 (Eq. 6)

 (Eq. 7)

 (Eq. 8)

 (Eq. 9)

 (Eq. 10)

 (Eq. 11)

 (Eq. 12)

Since obtaining an analytical solution to the HJI equation is often impractical, an Approximate Dy-
namic Programming (ADP) algorithm will approximate the solution. This approach, widely used in 
various studies (Liu et al. 2017, Penar and Hendzel 2022, Modares et al. 2015), leverages concepts 
from reinforcement learning and utilizes an actor-critic structure. The actor approximates the strat-
egies of both the controller and the disturbance, while the critic approximates the value function, 
which captures the long-term cost associated with each state and the corresponding optimal strate-
gies (Liu et al. 2017, Hendzel and Penar 2019).

𝑥𝑥� = 𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧 1 
(5) 2 

𝑉𝑉�𝑥𝑥�𝑡𝑡�� = � 𝑒𝑒��������𝑥𝑥��𝜏𝜏�𝑄𝑄𝑥𝑥�𝜏𝜏� + 𝑢𝑢��𝜏𝜏�𝑅𝑅𝑢𝑢�𝜏𝜏� 𝑡 𝛾𝛾���𝑥𝑥�
�

�
�𝑧𝑧𝜏𝜏 3 

(6) 4 
𝑉𝑉∗�𝑥𝑥� = 𝐽𝐽�𝑥𝑥, 𝑢𝑢∗, 𝑧𝑧∗� = 𝑚𝑚𝑠𝑠𝑠𝑠� 𝑚𝑚𝑡𝑡𝑥𝑥� 𝐽𝐽�𝑥𝑥, 𝑢𝑢, 𝑧𝑧� = 𝑚𝑚𝑡𝑡𝑥𝑥� 𝑚𝑚𝑠𝑠𝑠𝑠� 𝐽𝐽�𝑥𝑥, 𝑢𝑢, 𝑧𝑧� 5 

(7) 6 
��
�� �𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧� +  𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝑢𝑢�𝑅𝑅𝑢𝑢 𝑡 𝛾𝛾𝑉𝑉�𝑥𝑥� + 𝛾𝛾���𝑥𝑥�  7 

(8) 8 
𝐻𝐻�𝑥𝑥, 𝑉𝑉, 𝑢𝑢, 𝑧𝑧� = ��

�� �𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧� +  𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝑢𝑢�𝑅𝑅𝑢𝑢 𝑡 𝛾𝛾𝑉𝑉�𝑥𝑥� + 𝛾𝛾���𝑥𝑥�  9 
(9) 10 

𝑢𝑢∗ = 𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢 = 0 → 𝑢𝑢∗ = 𝑡 1

2 𝑅𝑅��𝑔𝑔�𝑥𝑥�� 𝑑𝑑𝑉𝑉∗

𝑑𝑑𝑥𝑥  11 
(10) 12 

𝑧𝑧∗ = 𝜕𝜕𝐻𝐻
𝜕𝜕𝑑𝑑 = 0 → 𝑧𝑧∗ = 1

2𝛾𝛾� ℎ�𝑥𝑥�� 𝑑𝑑𝑉𝑉∗

𝑑𝑑𝑥𝑥  13 

(11) 14 

𝑉𝑉�𝑥𝑥� = 𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝛻𝛻𝑉𝑉∗�𝑓𝑓�𝑥𝑥� 𝑡 1
4 𝛻𝛻𝑉𝑉∗�𝑔𝑔�𝑥𝑥�𝑅𝑅��𝑔𝑔��𝑥𝑥�𝛻𝛻𝑉𝑉∗ + 1

4𝛾𝛾 𝛻𝛻𝑉𝑉∗�ℎ�𝑥𝑥�𝑘𝑘��𝑥𝑥�𝛻𝛻𝑉𝑉∗ = 0 15 

(12) 16 
 17 

𝑥𝑥� = 𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧 1 
(5) 2 

𝑉𝑉�𝑥𝑥�𝑡𝑡�� = � 𝑒𝑒��������𝑥𝑥��𝜏𝜏�𝑄𝑄𝑥𝑥�𝜏𝜏� + 𝑢𝑢��𝜏𝜏�𝑅𝑅𝑢𝑢�𝜏𝜏� 𝑡 𝛾𝛾���𝑥𝑥�
�

�
�𝑧𝑧𝜏𝜏 3 

(6) 4 
𝑉𝑉∗�𝑥𝑥� = 𝐽𝐽�𝑥𝑥, 𝑢𝑢∗, 𝑧𝑧∗� = 𝑚𝑚𝑠𝑠𝑠𝑠� 𝑚𝑚𝑡𝑡𝑥𝑥� 𝐽𝐽�𝑥𝑥, 𝑢𝑢, 𝑧𝑧� = 𝑚𝑚𝑡𝑡𝑥𝑥� 𝑚𝑚𝑠𝑠𝑠𝑠� 𝐽𝐽�𝑥𝑥, 𝑢𝑢, 𝑧𝑧� 5 

(7) 6 
��
�� �𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧� +  𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝑢𝑢�𝑅𝑅𝑢𝑢 𝑡 𝛾𝛾𝑉𝑉�𝑥𝑥� + 𝛾𝛾���𝑥𝑥�  7 

(8) 8 
𝐻𝐻�𝑥𝑥, 𝑉𝑉, 𝑢𝑢, 𝑧𝑧� = ��

�� �𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧� +  𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝑢𝑢�𝑅𝑅𝑢𝑢 𝑡 𝛾𝛾𝑉𝑉�𝑥𝑥� + 𝛾𝛾���𝑥𝑥�  9 
(9) 10 

𝑢𝑢∗ = 𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢 = 0 → 𝑢𝑢∗ = 𝑡 1

2 𝑅𝑅��𝑔𝑔�𝑥𝑥�� 𝑑𝑑𝑉𝑉∗

𝑑𝑑𝑥𝑥  11 
(10) 12 

𝑧𝑧∗ = 𝜕𝜕𝐻𝐻
𝜕𝜕𝑑𝑑 = 0 → 𝑧𝑧∗ = 1

2𝛾𝛾� ℎ�𝑥𝑥�� 𝑑𝑑𝑉𝑉∗

𝑑𝑑𝑥𝑥  13 

(11) 14 

𝑉𝑉�𝑥𝑥� = 𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝛻𝛻𝑉𝑉∗�𝑓𝑓�𝑥𝑥� 𝑡 1
4 𝛻𝛻𝑉𝑉∗�𝑔𝑔�𝑥𝑥�𝑅𝑅��𝑔𝑔��𝑥𝑥�𝛻𝛻𝑉𝑉∗ + 1

4𝛾𝛾 𝛻𝛻𝑉𝑉∗�ℎ�𝑥𝑥�𝑘𝑘��𝑥𝑥�𝛻𝛻𝑉𝑉∗ = 0 15 

(12) 16 
 17 

𝑥𝑥� = 𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧 1 
(5) 2 

𝑉𝑉�𝑥𝑥�𝑡𝑡�� = � 𝑒𝑒��������𝑥𝑥��𝜏𝜏�𝑄𝑄𝑥𝑥�𝜏𝜏� + 𝑢𝑢��𝜏𝜏�𝑅𝑅𝑢𝑢�𝜏𝜏� 𝑡 𝛾𝛾���𝑥𝑥�
�

�
�𝑧𝑧𝜏𝜏 3 

(6) 4 
𝑉𝑉∗�𝑥𝑥� = 𝐽𝐽�𝑥𝑥, 𝑢𝑢∗, 𝑧𝑧∗� = 𝑚𝑚𝑠𝑠𝑠𝑠� 𝑚𝑚𝑡𝑡𝑥𝑥� 𝐽𝐽�𝑥𝑥, 𝑢𝑢, 𝑧𝑧� = 𝑚𝑚𝑡𝑡𝑥𝑥� 𝑚𝑚𝑠𝑠𝑠𝑠� 𝐽𝐽�𝑥𝑥, 𝑢𝑢, 𝑧𝑧� 5 

(7) 6 
��
�� �𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧� +  𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝑢𝑢�𝑅𝑅𝑢𝑢 𝑡 𝛾𝛾𝑉𝑉�𝑥𝑥� + 𝛾𝛾���𝑥𝑥�  7 

(8) 8 
𝐻𝐻�𝑥𝑥, 𝑉𝑉, 𝑢𝑢, 𝑧𝑧� = ��

�� �𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧� +  𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝑢𝑢�𝑅𝑅𝑢𝑢 𝑡 𝛾𝛾𝑉𝑉�𝑥𝑥� + 𝛾𝛾���𝑥𝑥�  9 
(9) 10 

𝑢𝑢∗ = 𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢 = 0 → 𝑢𝑢∗ = 𝑡 1

2 𝑅𝑅��𝑔𝑔�𝑥𝑥�� 𝑑𝑑𝑉𝑉∗

𝑑𝑑𝑥𝑥  11 
(10) 12 

𝑧𝑧∗ = 𝜕𝜕𝐻𝐻
𝜕𝜕𝑑𝑑 = 0 → 𝑧𝑧∗ = 1

2𝛾𝛾� ℎ�𝑥𝑥�� 𝑑𝑑𝑉𝑉∗

𝑑𝑑𝑥𝑥  13 

(11) 14 

𝑉𝑉�𝑥𝑥� = 𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝛻𝛻𝑉𝑉∗�𝑓𝑓�𝑥𝑥� 𝑡 1
4 𝛻𝛻𝑉𝑉∗�𝑔𝑔�𝑥𝑥�𝑅𝑅��𝑔𝑔��𝑥𝑥�𝛻𝛻𝑉𝑉∗ + 1

4𝛾𝛾 𝛻𝛻𝑉𝑉∗�ℎ�𝑥𝑥�𝑘𝑘��𝑥𝑥�𝛻𝛻𝑉𝑉∗ = 0 15 

(12) 16 
 17 

𝑥𝑥� = 𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧 1 
(5) 2 

𝑉𝑉�𝑥𝑥�𝑡𝑡�� = � 𝑒𝑒��������𝑥𝑥��𝜏𝜏�𝑄𝑄𝑥𝑥�𝜏𝜏� + 𝑢𝑢��𝜏𝜏�𝑅𝑅𝑢𝑢�𝜏𝜏� 𝑡 𝛾𝛾���𝑥𝑥�
�

�
�𝑧𝑧𝜏𝜏 3 

(6) 4 
𝑉𝑉∗�𝑥𝑥� = 𝐽𝐽�𝑥𝑥, 𝑢𝑢∗, 𝑧𝑧∗� = 𝑚𝑚𝑠𝑠𝑠𝑠� 𝑚𝑚𝑡𝑡𝑥𝑥� 𝐽𝐽�𝑥𝑥, 𝑢𝑢, 𝑧𝑧� = 𝑚𝑚𝑡𝑡𝑥𝑥� 𝑚𝑚𝑠𝑠𝑠𝑠� 𝐽𝐽�𝑥𝑥, 𝑢𝑢, 𝑧𝑧� 5 

(7) 6 
��
�� �𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧� +  𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝑢𝑢�𝑅𝑅𝑢𝑢 𝑡 𝛾𝛾𝑉𝑉�𝑥𝑥� + 𝛾𝛾���𝑥𝑥�  7 

(8) 8 
𝐻𝐻�𝑥𝑥, 𝑉𝑉, 𝑢𝑢, 𝑧𝑧� = ��

�� �𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧� +  𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝑢𝑢�𝑅𝑅𝑢𝑢 𝑡 𝛾𝛾𝑉𝑉�𝑥𝑥� + 𝛾𝛾���𝑥𝑥�  9 
(9) 10 

𝑢𝑢∗ = 𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢 = 0 → 𝑢𝑢∗ = 𝑡 1

2 𝑅𝑅��𝑔𝑔�𝑥𝑥�� 𝑑𝑑𝑉𝑉∗

𝑑𝑑𝑥𝑥  11 
(10) 12 

𝑧𝑧∗ = 𝜕𝜕𝐻𝐻
𝜕𝜕𝑑𝑑 = 0 → 𝑧𝑧∗ = 1

2𝛾𝛾� ℎ�𝑥𝑥�� 𝑑𝑑𝑉𝑉∗

𝑑𝑑𝑥𝑥  13 

(11) 14 

𝑉𝑉�𝑥𝑥� = 𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝛻𝛻𝑉𝑉∗�𝑓𝑓�𝑥𝑥� 𝑡 1
4 𝛻𝛻𝑉𝑉∗�𝑔𝑔�𝑥𝑥�𝑅𝑅��𝑔𝑔��𝑥𝑥�𝛻𝛻𝑉𝑉∗ + 1

4𝛾𝛾 𝛻𝛻𝑉𝑉∗�ℎ�𝑥𝑥�𝑘𝑘��𝑥𝑥�𝛻𝛻𝑉𝑉∗ = 0 15 

(12) 16 
 17 

𝑥𝑥� = 𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧 1 
(5) 2 

𝑉𝑉�𝑥𝑥�𝑡𝑡�� = � 𝑒𝑒��������𝑥𝑥��𝜏𝜏�𝑄𝑄𝑥𝑥�𝜏𝜏� + 𝑢𝑢��𝜏𝜏�𝑅𝑅𝑢𝑢�𝜏𝜏� 𝑡 𝛾𝛾���𝑥𝑥�
�

�
�𝑧𝑧𝜏𝜏 3 

(6) 4 
𝑉𝑉∗�𝑥𝑥� = 𝐽𝐽�𝑥𝑥, 𝑢𝑢∗, 𝑧𝑧∗� = 𝑚𝑚𝑠𝑠𝑠𝑠� 𝑚𝑚𝑡𝑡𝑥𝑥� 𝐽𝐽�𝑥𝑥, 𝑢𝑢, 𝑧𝑧� = 𝑚𝑚𝑡𝑡𝑥𝑥� 𝑚𝑚𝑠𝑠𝑠𝑠� 𝐽𝐽�𝑥𝑥, 𝑢𝑢, 𝑧𝑧� 5 

(7) 6 
��
�� �𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧� +  𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝑢𝑢�𝑅𝑅𝑢𝑢 𝑡 𝛾𝛾𝑉𝑉�𝑥𝑥� + 𝛾𝛾���𝑥𝑥�  7 

(8) 8 
𝐻𝐻�𝑥𝑥, 𝑉𝑉, 𝑢𝑢, 𝑧𝑧� = ��

�� �𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧� +  𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝑢𝑢�𝑅𝑅𝑢𝑢 𝑡 𝛾𝛾𝑉𝑉�𝑥𝑥� + 𝛾𝛾���𝑥𝑥�  9 
(9) 10 

𝑢𝑢∗ = 𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢 = 0 → 𝑢𝑢∗ = 𝑡 1

2 𝑅𝑅��𝑔𝑔�𝑥𝑥�� 𝑑𝑑𝑉𝑉∗

𝑑𝑑𝑥𝑥  11 
(10) 12 

𝑧𝑧∗ = 𝜕𝜕𝐻𝐻
𝜕𝜕𝑑𝑑 = 0 → 𝑧𝑧∗ = 1

2𝛾𝛾� ℎ�𝑥𝑥�� 𝑑𝑑𝑉𝑉∗

𝑑𝑑𝑥𝑥  13 

(11) 14 

𝑉𝑉�𝑥𝑥� = 𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝛻𝛻𝑉𝑉∗�𝑓𝑓�𝑥𝑥� 𝑡 1
4 𝛻𝛻𝑉𝑉∗�𝑔𝑔�𝑥𝑥�𝑅𝑅��𝑔𝑔��𝑥𝑥�𝛻𝛻𝑉𝑉∗ + 1

4𝛾𝛾 𝛻𝛻𝑉𝑉∗�ℎ�𝑥𝑥�𝑘𝑘��𝑥𝑥�𝛻𝛻𝑉𝑉∗ = 0 15 

(12) 16 
 17 

𝑥𝑥� = 𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧 1 
(5) 2 

𝑉𝑉�𝑥𝑥�𝑡𝑡�� = � 𝑒𝑒��������𝑥𝑥��𝜏𝜏�𝑄𝑄𝑥𝑥�𝜏𝜏� + 𝑢𝑢��𝜏𝜏�𝑅𝑅𝑢𝑢�𝜏𝜏� 𝑡 𝛾𝛾���𝑥𝑥�
�

�
�𝑧𝑧𝜏𝜏 3 

(6) 4 
𝑉𝑉∗�𝑥𝑥� = 𝐽𝐽�𝑥𝑥, 𝑢𝑢∗, 𝑧𝑧∗� = 𝑚𝑚𝑠𝑠𝑠𝑠� 𝑚𝑚𝑡𝑡𝑥𝑥� 𝐽𝐽�𝑥𝑥, 𝑢𝑢, 𝑧𝑧� = 𝑚𝑚𝑡𝑡𝑥𝑥� 𝑚𝑚𝑠𝑠𝑠𝑠� 𝐽𝐽�𝑥𝑥, 𝑢𝑢, 𝑧𝑧� 5 

(7) 6 
��
�� �𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧� +  𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝑢𝑢�𝑅𝑅𝑢𝑢 𝑡 𝛾𝛾𝑉𝑉�𝑥𝑥� + 𝛾𝛾���𝑥𝑥�  7 

(8) 8 
𝐻𝐻�𝑥𝑥, 𝑉𝑉, 𝑢𝑢, 𝑧𝑧� = ��

�� �𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧� +  𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝑢𝑢�𝑅𝑅𝑢𝑢 𝑡 𝛾𝛾𝑉𝑉�𝑥𝑥� + 𝛾𝛾���𝑥𝑥�  9 
(9) 10 

𝑢𝑢∗ = 𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢 = 0 → 𝑢𝑢∗ = 𝑡 1

2 𝑅𝑅��𝑔𝑔�𝑥𝑥�� 𝑑𝑑𝑉𝑉∗

𝑑𝑑𝑥𝑥  11 
(10) 12 

𝑧𝑧∗ = 𝜕𝜕𝐻𝐻
𝜕𝜕𝑑𝑑 = 0 → 𝑧𝑧∗ = 1

2𝛾𝛾� ℎ�𝑥𝑥�� 𝑑𝑑𝑉𝑉∗

𝑑𝑑𝑥𝑥  13 

(11) 14 

𝑉𝑉�𝑥𝑥� = 𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝛻𝛻𝑉𝑉∗�𝑓𝑓�𝑥𝑥� 𝑡 1
4 𝛻𝛻𝑉𝑉∗�𝑔𝑔�𝑥𝑥�𝑅𝑅��𝑔𝑔��𝑥𝑥�𝛻𝛻𝑉𝑉∗ + 1

4𝛾𝛾 𝛻𝛻𝑉𝑉∗�ℎ�𝑥𝑥�𝑘𝑘��𝑥𝑥�𝛻𝛻𝑉𝑉∗ = 0 15 

(12) 16 
 17 

𝑥𝑥� = 𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧 1 
(5) 2 

𝑉𝑉�𝑥𝑥�𝑡𝑡�� = � 𝑒𝑒��������𝑥𝑥��𝜏𝜏�𝑄𝑄𝑥𝑥�𝜏𝜏� + 𝑢𝑢��𝜏𝜏�𝑅𝑅𝑢𝑢�𝜏𝜏� 𝑡 𝛾𝛾���𝑥𝑥�
�

�
�𝑧𝑧𝜏𝜏 3 

(6) 4 
𝑉𝑉∗�𝑥𝑥� = 𝐽𝐽�𝑥𝑥, 𝑢𝑢∗, 𝑧𝑧∗� = 𝑚𝑚𝑠𝑠𝑠𝑠� 𝑚𝑚𝑡𝑡𝑥𝑥� 𝐽𝐽�𝑥𝑥, 𝑢𝑢, 𝑧𝑧� = 𝑚𝑚𝑡𝑡𝑥𝑥� 𝑚𝑚𝑠𝑠𝑠𝑠� 𝐽𝐽�𝑥𝑥, 𝑢𝑢, 𝑧𝑧� 5 

(7) 6 
��
�� �𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧� +  𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝑢𝑢�𝑅𝑅𝑢𝑢 𝑡 𝛾𝛾𝑉𝑉�𝑥𝑥� + 𝛾𝛾���𝑥𝑥�  7 

(8) 8 
𝐻𝐻�𝑥𝑥, 𝑉𝑉, 𝑢𝑢, 𝑧𝑧� = ��

�� �𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧� +  𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝑢𝑢�𝑅𝑅𝑢𝑢 𝑡 𝛾𝛾𝑉𝑉�𝑥𝑥� + 𝛾𝛾���𝑥𝑥�  9 
(9) 10 

𝑢𝑢∗ = 𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢 = 0 → 𝑢𝑢∗ = 𝑡 1

2 𝑅𝑅��𝑔𝑔�𝑥𝑥�� 𝑑𝑑𝑉𝑉∗

𝑑𝑑𝑥𝑥  11 
(10) 12 

𝑧𝑧∗ = 𝜕𝜕𝐻𝐻
𝜕𝜕𝑑𝑑 = 0 → 𝑧𝑧∗ = 1

2𝛾𝛾� ℎ�𝑥𝑥�� 𝑑𝑑𝑉𝑉∗

𝑑𝑑𝑥𝑥  13 

(11) 14 

𝑉𝑉�𝑥𝑥� = 𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝛻𝛻𝑉𝑉∗�𝑓𝑓�𝑥𝑥� 𝑡 1
4 𝛻𝛻𝑉𝑉∗�𝑔𝑔�𝑥𝑥�𝑅𝑅��𝑔𝑔��𝑥𝑥�𝛻𝛻𝑉𝑉∗ + 1

4𝛾𝛾 𝛻𝛻𝑉𝑉∗�ℎ�𝑥𝑥�𝑘𝑘��𝑥𝑥�𝛻𝛻𝑉𝑉∗ = 0 15 

(12) 16 
 17 

𝑥𝑥� = 𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧 1 
(5) 2 

𝑉𝑉�𝑥𝑥�𝑡𝑡�� = � 𝑒𝑒��������𝑥𝑥��𝜏𝜏�𝑄𝑄𝑥𝑥�𝜏𝜏� + 𝑢𝑢��𝜏𝜏�𝑅𝑅𝑢𝑢�𝜏𝜏� 𝑡 𝛾𝛾���𝑥𝑥�
�

�
�𝑧𝑧𝜏𝜏 3 

(6) 4 
𝑉𝑉∗�𝑥𝑥� = 𝐽𝐽�𝑥𝑥, 𝑢𝑢∗, 𝑧𝑧∗� = 𝑚𝑚𝑠𝑠𝑠𝑠� 𝑚𝑚𝑡𝑡𝑥𝑥� 𝐽𝐽�𝑥𝑥, 𝑢𝑢, 𝑧𝑧� = 𝑚𝑚𝑡𝑡𝑥𝑥� 𝑚𝑚𝑠𝑠𝑠𝑠� 𝐽𝐽�𝑥𝑥, 𝑢𝑢, 𝑧𝑧� 5 

(7) 6 
��
�� �𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧� +  𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝑢𝑢�𝑅𝑅𝑢𝑢 𝑡 𝛾𝛾𝑉𝑉�𝑥𝑥� + 𝛾𝛾���𝑥𝑥�  7 

(8) 8 
𝐻𝐻�𝑥𝑥, 𝑉𝑉, 𝑢𝑢, 𝑧𝑧� = ��

�� �𝑓𝑓�𝑥𝑥� + 𝑔𝑔�𝑥𝑥�𝑢𝑢 + ℎ�𝑥𝑥�𝑧𝑧� +  𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝑢𝑢�𝑅𝑅𝑢𝑢 𝑡 𝛾𝛾𝑉𝑉�𝑥𝑥� + 𝛾𝛾���𝑥𝑥�  9 
(9) 10 

𝑢𝑢∗ = 𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢 = 0 → 𝑢𝑢∗ = 𝑡 1

2 𝑅𝑅��𝑔𝑔�𝑥𝑥�� 𝑑𝑑𝑉𝑉∗

𝑑𝑑𝑥𝑥  11 
(10) 12 

𝑧𝑧∗ = 𝜕𝜕𝐻𝐻
𝜕𝜕𝑑𝑑 = 0 → 𝑧𝑧∗ = 1

2𝛾𝛾� ℎ�𝑥𝑥�� 𝑑𝑑𝑉𝑉∗

𝑑𝑑𝑥𝑥  13 

(11) 14 

𝑉𝑉�𝑥𝑥� = 𝑥𝑥�𝑄𝑄𝑥𝑥 + 𝛻𝛻𝑉𝑉∗�𝑓𝑓�𝑥𝑥� 𝑡 1
4 𝛻𝛻𝑉𝑉∗�𝑔𝑔�𝑥𝑥�𝑅𝑅��𝑔𝑔��𝑥𝑥�𝛻𝛻𝑉𝑉∗ + 1

4𝛾𝛾 𝛻𝛻𝑉𝑉∗�ℎ�𝑥𝑥�𝑘𝑘��𝑥𝑥�𝛻𝛻𝑉𝑉∗ = 0 15 

(12) 16 
 17 



agricultural engineering.eu 80(1) 6

Neural Critic Approximation and Adaptive Learning
To overcome the challenge of solving the HJI equation, a critic neural network is employed to ap-
proximate the value function V, denoted as V̂ (equation 13). Ŵ ∈ ℝi represents the estimated neural 
network weights (since the ideal weights are unknown), and ϕ(x) ∈ ℝi signifies a fundamental vec-
tor function associated with the neurons in the network. By substituting V̂ from equation 13 into 
equations 10 and 11, approximations for the optimal control and disturbance signals can be derived, 
respectively equation 14 and 15. The next step involves determining the neural network weights (Ẇ̂) 
online through an adaptive learning law. Here, we utilized equation 16 and 17 based on the work by 
Zhao et al. (2022), these formulations lead to the updated HJI equation in equation 18, incorporating 
the critic NN approximation. Here εHJI is the approximation error. To estimate the parameter W, fil-
tered regressor matrices, Ε ∈ ℝi×i and Ο ∈ ℝi in equations 19 and 20 are defined (Luan et al. 2019). 
For updating the value of Ε and Ο equations 21 and 22 are used, where η is a positive constant and 
initial values of these matrices are set to zero. Using updated Ε and Ο , an auxiliary vector Ν ∈ ℝi is 
shown in equation 23. This vector incorporates the weight estimation error (W̃ = W − Ŵ) and a bound-
ed variable, ρ = ∫0 

t exp (−η(t − τ))εHJI Α(τ)dτ. Finally, the adaptive law is obtained through equation 
24 (Zhao et al. 2022). This law governs how the estimated weights (Ŵ) are adjusted online based on 
the auxiliary vector Ν and a positive learning gain, ξ. The online learning algorithm can converge by 
including the estimation error. For further details about this assumption and proof of it, readers are 
directed to refer to Theorem 1 of (Zhao et al. 2022).
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Robust Adaptive Kinematic Path Tracking Control
Error-based control is a common approach in robotics. Here, the errors (e) between the robot‘s cur-
rent posture (q) and the desired reference posture (qd) are defined (equation 25). Additionally, the 
derivatives of these errors (ė) are incorporated to form error-rate signals, as given in equation 26. 
Considering the system dynamics (equation 5) and treating the error as the system state, an updated 
version of the derivative error (equation 27) can be derived. This equation reformulates the kinemat-
ics of AAV in terms of the error state (e):

 (Eq. 25)

 (Eq. 26)

 (Eq. 27)

By comparing equations 27 and 5, it is recognized that J(X)U and q̇d can be reformulated as g(e)u 
and f(e), respectively, where g(e) and f(e) represent the system dynamics in terms of the error state 
(e). The wheels sliding term will be modeled as the external disturbance in the form of h(e)z. This 
allows us to make the kinematic model into the nonlinear affine system structure. After reformulat-
ing the kinematic model, the control input signal (Û) for the Ackermann-steering robot is defined in 
equation  28. This control law (equivalently, linear and angular velocities) incorporates the estimated 
weights (Ŵ) derived from the Critic Neural Network and leverages the gradient of the activation 
function (∇ϕ(e)) in conjunction with the matrix J(.) of the kinematic model. Moreover, it employs the 
design matrix R to facilitate accurate path tracking capabilities for the robotic system.

 (Eq. 28)

Figure 2 depicts a schematic block diagram of the proposed kinematic control method with the key 
components breakdown as follow: (i) Reference Path Generation, (ii) neural estimator, and (iii) H∞ 
Robust Controller. A reference desired trajectory for the robot is first generated using mathematical 
equations (specific equations are provided in the simulation section). The neural estimator block 
utilizes the robot‘s linear and angular velocity, the difference between the reference path and its posi-
tion (equation 25), and their derivatives (equation 26) as inputs. Based on these inputs, the estimator 
approximates the HJI equation, providing an initial estimate for the controller. Based on the estimated 
weights from the neural estimator (equation 24) and the current location of the robot and relative 
error from the reference trajectory, this block (acting as the actor) generates the appropriate control 
signal using equation 28 (velocity commands) to guide the robot towards the desired trajectory. This 
control loop ultimately enables the Agriculture Mobile Robot (AAV) to track the reference trajectory 
with minimal deviation, even in the presence of slip modeled as an external disturbance.
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Simulation Results
A numerical simulation study is conducted using MATLAB-Simulink to test the effectiveness of the 
proposed control scheme under the assumption of wheel slippage on a double Ackermann-steering 
mobile robot with a wheelbase of 0.8 meters to follow a predefined trajectory in a vineyard environ-
ment consisting of 10-meter straight lines and 5-meter (diameter) half-circles at the end of each row. 
The track lines are placed at a distance of 5 meters from each other as shown in Figure 3. 

The orange and black lines represent the reference and robot trajectories, respectively, and the green 
squares indicate plants in the track lines. The robot‘s initial condition for maneuvering is specified 
as q = [-0.8, -1.2, 4π ⁄ 9,0]T, which is far from the beginning of the reference trajectory. The adaptive 
learning process relies on various parameters. These include the initial value of estimated critic 
neural network weights, filtered regressor matrices and their related constant parameters (which can 
be found in equations 16 to 24, and design matrices in the value function (as described in equation 
6). All of these parameters are illustrated in equation 29. To illustrate better, the Critic Neural Net-
work used in this framework is a feedforward neural network, comprising one hidden layer with 10 
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Figure 2: Schematic block diagram of the proposed kinematic controller
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neurons. The activation function used is given by equation 30, which is the Kronecker product of the 
errors. The network‘s weights are initialized randomly and by excessive trial and error process and 
updated continuously during the operation, allowing the controller to learn in real-time. No dropout 
or batch normalization techniques were applied, as real-time learning was prioritized over static 
optimization.

 (Eq. 29)

 (Eq. 30)

This nonlinear mapping of the error signals and their gradients is used in the approximation process 
and in producing control signals, respectively. e₁, e₂, e₃ and e₄ correspond to the first to fourth ele-
ments of posture error (i.e. eX₁, eX₂, eX₃, eX₄). The simulation results on the Ackermann mobile robot 
are shown in Figure 4 to Figure 8 under the assumption of wheel slippage. The slippage can be mod-
eled as D = 0.5H(t - 20) × [sin θ, cos θ, tan δ ⁄ 0.8, 0]T + [0,0,0,H(t - 20) - H(t - 140)]T. In Figure 4a, the 
wheels of the robot began to slip from the 20th second when it was trying to track the half-circle row-
end. This continued until the end of the experiment, which was the 140th second, as indicated by the 
red lines and circles. Even though the system was disrupted, the controller guided the robot to follow 
the predetermined path. As shown in Figure 4b–e, all posture-related states accurately matched their 
desired values.

Figure 5 displays the trajectory and angle tracking profiles. The trajectory tracking (Figure 5a) 
error shows that the robot can maintain a distance of 0.1 meters to its reference path even during 
slippage. At the 20th second, the robot is affected by the slippage and deviates from its desired path, 
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but it is able to recover and get back on track. This characteristic can also be observed in the angle 
tracking (Figure 5b), where the controller can accurately follow the desired profiles and effectively 
reduce the impact of disturbance caused by wheel slippage, with errors remaining below 0.02, which 
is acceptable for agricultural applications.

In order to thoroughly assess the effectiveness of the proposed control method, Table 1 and Figure 
6 have been included to demonstrate the tracking errors. Various approaches have been utilized to 
calculate the errors such as Root Mean Squared Error (RMSE), Integral Error (IE), Integral Absolute 
Error (IAE), Integral Time Absolute Error (ITAE), Integral Squared Error (ISE), and Integral Time 
Squared Error (ITSE). The RMSE metric in Figure 6a reveals that the longitude tracking (ex) has the 
highest error of 0.21, indicating a substantial deviation from the desired trajectory along the x-axis. 
Conversely, the steering angle tracking (eδ) demonstrates the lowest RMSE of 0.01, suggesting pre-
cise control over the robot‘s steering mechanism. It is worth mentioning that different agricultural 
tasks have varying precision requirements, which should be accounted for when designing control 
systems. For instance, autonomous harvesting might require higher precision (within a few centim-
eters) to ensure accurate manipulation of crops, while tasks like yield mapping or crop monitoring 
may tolerate slightly higher positional errors. Based on existing studies, a precision threshold of ap-
proximately 2–3 cm for lateral position errors is generally considered sufficient for most agricultural 
operations. In our proposed framework, the Root Mean Squared Error (RMSE) for trajectory tracking 
is below 0.21 meters, which aligns with the acceptable range for applications like row navigation and 
targeted spraying. As shown in Figure 6b for IE, Negative values for ex, ey, and eθ imply that the robot 
lagged behind the reference trajectory, undershooting the desired position and orientation. However, 
the positive value for eδ suggests an overshooting behavior in the steering angle control. IAE and ITAE 
(Figure 6c, 6d) metrics offer additional perspectives on the cumulative error magnitudes. Consist-
ent with the RMSE and IE results, the longitude tracking exhibits the highest IAE (21.69) and ITAE 
(924.10) values, further emphasizing the challenges in accurately following the x-coordinate trajec-
tory. The steering angle tracking, on the other hand, exhibits the lowest IAE (0.67) and ITAE (29.75), 
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indicating superior control performance in this aspect. ISE and ITSE metrics, which assign higher 
weights to larger errors in Figure 6e and 6f, also support the findings from the other error calcula-
tion approaches. The longitude tracking (ex) demonstrates the highest ISE (6.40) and ITSE (130.67) 
values, suggesting the presence of significant deviations from the desired trajectory along the x-axis. 
Conversely, the steering angle tracking (eδ) exhibits the lowest ISE (0.01) and ITSE (0.32), indicating 
minimal large errors in this aspect of the control system‘s performance. 

Table 1: Numerical values of different methods of error calculation

Errors RSME IE IAE ITAE ISE ITSE
ex 0.21 −6.94 21.69 924.10 6.40 130.67
ey 0.07 −2.15 6.35 256.34 0.69 19.00
eθ 0.02 −0.63 2.21 91.99 0.07 1.85
eδ 0.01 0.2 0.67 29.75 0.01 0.32

Figure 7 illustrates the evolution of the controller‘s weights, which converge to the following val-
ues after undergoing changes (18.5, −1.3, −5, −5.9, 9.8, −16.3, 29.7, 51.3, 9.1, 93). During the wheel 
slippage condition, the w₁, w₂, w₄, w₅ and w₉ see tangible changes. This weight adaptation pro-
cess demonstrates the controller‘s capability to adjust its parameters in response to the disturbance 
caused by wheel slippage, ultimately converging to the appropriate values for stable trajectory track-
ing performance. Overall, the simulation results showcase the proposed controller‘s effectiveness in 
achieving accurate trajectory tracking, handling disturbances, and adapting its parameters through 
learning to maintain stable and precise control performance within the vineyard environment.

Figure 6: Assessing tracking accuracy with different error calculation metrics, including RMSE, IE, IAE, ITAE, ISE, and 
ITSE

a) b) c) d) e) f)
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Figure 8 displays the different levels of disturbance boundaries studied during the simulation. 
The numerical values (0.5, 0.7, 0.8) represent the tested disturbance magnitudes. As shown in the 
figure, when the disturbance magnitude is equal to or greater than 0.8, it causes significant deviation 
from the desired trajectory, leading to instability. On the other hand, when the magnitudes are equal 
to or smaller than 0.7, the tracking performance is much better. With an amplitude of 0.8, the robot 
can maneuver for nearly 40 seconds after slippage and then rotate itself and move back on the line; 
however, it cannot follow the second row and exit from the field.
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Figure 8: Tracking performance for different wheel slippage disturbance magnitudes
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Figure 7: Adaptation of critic neural network weights
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Discussion
The proposed framework‘s reliance on continuous online learning and adaptation through the Critic 
Neural Network does introduce computational complexity, which may pose challenges in real-time ap-
plications. The neural network updates must be processed rapidly to ensure responsiveness to chang-
ing environmental conditions. Hardware considerations, such as GPU acceleration or optimized em-
bedded systems, may be necessary to meet the real-time demands of agricultural robots. Additionally, 
energy consumption may increase due to the continuous learning process, making energy-efficient 
computation strategies an important consideration for future implementations. While the current 
study validates the control framework through comprehensive simulation, real-world testing will pro-
vide a more complete evaluation of its performance under true agricultural conditions. Future work 
will involve testing the system in real-world scenarios such as vineyards and orchards, where wheel 
slippage and uneven terrain are common. Additionally, we plan to compare the proposed method with 
other established control methods like Model Predictive Control (MPC) to quantify its advantages in 
trajectory tracking precision, energy consumption, and computational efficiency.

It should also be noted that that there is no set rule for determining the best values at each stage 
of implementing a neural network. The results included in the presented study are the product of 
extensive work to determine the best configuration for this setup. We took into account not only the 
control effort but also the effectiveness of the controller in addressing this problem. It‘s worth noting 
that existing methods of Adaptive Dynamic Programming (ADP) also lack additional information in 
the published literatures, even in the most cited ones. Overall, for the current scope, we considered 
the value of weights and gains from the minimum values to a reasonable range to achieve these re-
sults and we explained that the chosen configuration demonstrates the proposed framework’s ability 
to adapt and track the desired path with the minimum possible errors for this platform. Another 
important point to mention is that due to the nature of approximation in finding solutions to the HJI 
equation, we should not expect the results to be optimal. To the best of out knowledge, in majority of 
the published literatures, the results are described as being somewhat near-optimal.

Conclusions
The research proposes an adaptive kinematic control framework for Ackermann steering agricultural 
robots, addressing issues like wheel slippage with focus on controlling the kinematics of the robot. 
The framework includes a comprehensive kinematic model and an adaptive dynamic programming 
approach using neural networks to ensure robust path tracking performance. The adaptive controller 
utilizes the estimated weights from the critic network with the kinematic model to compute veloc-
ity commands for the robot, allowing it to accurately track desired trajectories while compensating 
for external disturbances like wheel slippage. The results validate the controller‘s ability to achieve 
stable path tracking even when wheel slip occurs. While the robust control framework proposed 
in this study can handle general disturbances, a more detailed model that considers gravitational 
effects and multi-wheel slippage would provide greater accuracy. However, addressing these effects 
required expanding the scope of the study and considering the dynamic model of the mobile plat-
form. In this context, future studies can incorporate the forces affecting the systems into the equation 
of the dynamic model. Future work could also explore alternative neural network architectures or 
advanced learning algorithms to improve performance and adaptability further. Experimental testing 
in real-world farm environments would also be valuable to assess practical implementation aspects.
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